IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025951.html
   My bibliography  Save this article

Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis

Author

Listed:
  • Yang, Ning
  • Sheng, Xueru
  • Ti, Liting
  • Jia, Haiyuan
  • Ping, Qingwei
  • Li, Ning

Abstract

Biodiesel can be produced efficiently by the ball-milling method, which is a sustainable energy and can be incorporated into the economic system. However, the impact of process variables on the biodiesel yield has not been studied. In this paper, RSM and parametric analysis were used to model and optimize the ball-milling process. The catalyst dosage is an important parameter factor affecting the biodiesel yield. Furthermore, life cycle assessments were conducted for both ball-milling and magnetic stirring method to determine their differences. The results show that the ball-milling method has better potential environmental impacts, especially for abiotic depletion (fossil fuels), which is 80% reduction less than the magnetic stirring method. SWOT analysis aids in creating strategic approaches to increase effectiveness and boost competitiveness. Ball-milling method is more sustainable and economical than magnetic stirring for biodiesel preparation.

Suggested Citation

  • Yang, Ning & Sheng, Xueru & Ti, Liting & Jia, Haiyuan & Ping, Qingwei & Li, Ning, 2023. "Ball-milling transesterification process on biodiesel production: RSM optimization, life cycle assessment and market dynamics analysis," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025951
    DOI: 10.1016/j.energy.2023.129201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.