IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i1p4-d1023158.html
   My bibliography  Save this article

An Approach to Assess the Water Resources Reliability and Its Management

Author

Listed:
  • Jakub Żywiec

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Dawid Szpak

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Izabela Piegdoń

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Krzysztof Boryczko

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Katarzyna Pietrucha-Urbanik

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Barbara Tchórzewska-Cieślak

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

  • Janusz Rak

    (Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland)

Abstract

One of the factors limiting the possibility of the development of urban agglomerations is access to drinking water. Due to progressive climate change, the available water resources are limited. The paper proposes new indicators of limiting the development of agglomerations related to the availability of water resources and the production capacity of water treatment plants, a method for assessing the diversification of water resources (using the Pielou index), and a water loss balance was prepared based on International Water Association (IWA) standards. On the basis of the obtained results, the potential increase in the number of inhabitants indicators (∆P R , ∆P P ) and the time for the development of agglomeration indicators (T R , T P ), the directions of development of the studied agglomerations in terms of the possibility of water supply were indicated. The main problems were reducing the amount of water losses, appropriate management of the migration policy of the population, and the necessity to look for alternative sources of water.

Suggested Citation

  • Jakub Żywiec & Dawid Szpak & Izabela Piegdoń & Krzysztof Boryczko & Katarzyna Pietrucha-Urbanik & Barbara Tchórzewska-Cieślak & Janusz Rak, 2023. "An Approach to Assess the Water Resources Reliability and Its Management," Resources, MDPI, vol. 12(1), pages 1-14, January.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:4-:d:1023158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/1/4/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/1/4/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Monteiro & Raquel Cristina & Dídia Covas, 2021. "Water and Energy Efficiency Assessment in Urban Green Spaces," Energies, MDPI, vol. 14(17), pages 1-15, September.
    2. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    3. L. Feng & C. Huang, 2008. "A Risk Assessment Model of Water Shortage Based on Information Diffusion Technology and its Application in Analyzing Carrying Capacity of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 621-633, May.
    4. Krzysztof Boryczko & Janusz Rak, 2020. "Method for Assessment of Water Supply Diversification," Resources, MDPI, vol. 9(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    2. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik, 2023. "Water System Safety Analysis Model," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    2. Kaveh Madani & Miguel Mariño, 2009. "System Dynamics Analysis for Managing Iran’s Zayandeh-Rud River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2163-2187, September.
    3. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    4. Yansong Zhang & Yujie Wei & Yu Mao, 2023. "Sustainability Assessment of Regional Water Resources in China Based on DPSIR Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    5. Wang, Dandan & Li, Yusheng & Yang, Yongge & Hayase, Shuzi & Wu, Haifeng & Wang, Ruixiang & Ding, Chao & Shen, Qing, 2023. "How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation," Applied Energy, Elsevier, vol. 341(C).
    6. Izabela Piegdoń, 2022. "A New Concept of Crisis Water Management in Urban Areas Based on the Risk Maps of Lack of Water Supply in Response to European Law," Resources, MDPI, vol. 11(2), pages 1-18, February.
    7. Deng, Lei & Shi, Congling & Li, Haoran & Wan, Mei & Ren, Fei & Hou, Yanan & Tang, Fei, 2023. "Prediction of energy mass loss rate for biodiesel fire via machine learning and its physical modeling of flame radiation evolution," Energy, Elsevier, vol. 275(C).
    8. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    9. Chengzu Bai & Ren Zhang & Longxia Qian & Yaning Wu, 2017. "A fuzzy graph evolved by a new adaptive Bayesian framework and its applications in natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 899-918, June.
    10. Ning Zhang & Zichen Wang & Lan Zhang & Xiao Yang, 2021. "Assessment of Water Resources Carrying Risk and the Coping Behaviors of the Government and the Public," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    11. Lu Hao & Xiaoyu Zhang & Shoudong Liu, 2012. "Risk assessment to China’s agricultural drought disaster in county unit," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 785-801, March.
    12. Olya, Hossein G.T. & Alipour, Habib, 2015. "Risk assessment of precipitation and the tourism climate index," Tourism Management, Elsevier, vol. 50(C), pages 73-80.
    13. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    14. Zuo, Qingsong & Li, Qiming & Yang, Xiaomei & Chen, Wei & Zhu, Guohui & Shen, Zhuang & Xie, Yong & Tang, Yuanyou, 2023. "Investigation of electrically heating catalytic converter flow and temperature field performance improvement based on field synergy," Energy, Elsevier, vol. 274(C).
    15. Yonghua Zhu & Sam Drake & Haishen Lü & Jun Xia, 2010. "Analysis of Temporal and Spatial Differences in Eco-environmental Carrying Capacity Related to Water in the Haihe River Basins, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1089-1105, April.
    16. Li, Guohao & Chen, Xue & You, Xue-yi, 2023. "System dynamics prediction and development path optimization of regional carbon emissions: A case study of Tianjin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Elmira Hassanzadeh & Mahdi Zarghami & Yousef Hassanzadeh, 2012. "Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 129-145, January.
    18. Shixiong Xu & Sara Shirowzhan & Samad M. E. Sepasgozar, 2023. "Urban Waste Management and Prediction through Socio-Economic Values and Visualizing the Spatiotemporal Relationship on an Advanced GIS-Based Dashboard," Sustainability, MDPI, vol. 15(16), pages 1-38, August.
    19. Xiao-meng Song & Fan-zhe Kong & Che-sheng Zhan, 2011. "Assessment of Water Resources Carrying Capacity in Tianjin City of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 857-873, February.
    20. Zhiying Shao & Fengping Wu & Fang Li & Yue Zhao & Xia Xu, 2020. "System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins—A Case Study of Xinjiang," IJERPH, MDPI, vol. 17(23), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:4-:d:1023158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.