Extended exergy accounting theory to design waste-to-energy management system under uncertainty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127924
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
- Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
- Talens Peiró, L. & Villalba Méndez, G. & Sciubba, E. & Gabarrell i Durany, X., 2010. "Extended exergy accounting applied to biodiesel production," Energy, Elsevier, vol. 35(7), pages 2861-2869.
- Dušan Hrabec & Jakub Kůdela & Radovan Šomplák & Vlastimír Nevrlý & Pavel Popela, 2020. "Circular economy implementation in waste management network design problem: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1441-1458, December.
- Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
- Sciubba, Enrico, 2003. "Cost analysis of energy conversion systems via a novel resource-based quantifier," Energy, Elsevier, vol. 28(5), pages 457-477.
- Xiong, Jie & Ng, Tsan Sheng Adam & Wang, Shuming, 2016. "An optimization model for economic feasibility analysis and design of decentralized waste-to-energy systems," Energy, Elsevier, vol. 101(C), pages 239-251.
- Gambella, Claudio & Maggioni, Francesca & Vigo, Daniele, 2019. "A stochastic programming model for a tactical solid waste management problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 684-694.
- Chong, Yih Tng & Teo, Kwong Meng & Tang, Loon Ching, 2016. "A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 797-809.
- Kuznetsova, Elizaveta & Cardin, Michel-Alexandre & Diao, Mingzhen & Zhang, Sizhe, 2019. "Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 477-500.
- Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
- Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Hrabec, Dušan & Šomplák, Radovan & Nevrlý, Vlastimír & Viktorin, Adam & Pluháček, Michal & Popela, Pavel, 2020. "Sustainable waste-to-energy facility location: Influence of demand on energy sales," Energy, Elsevier, vol. 207(C).
- Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lyu, Zhengwei & Lan, Hongjie & Hua, Guowei & Cheng, T.C.E. & Xu, Yadong, 2024. "How to promote Chinese food waste-to-energy program? An evolutionary game approach," Energy, Elsevier, vol. 293(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
- Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
- Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
- Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
- Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
- Kuznetsova, Elizaveta & Cardin, Michel-Alexandre & Diao, Mingzhen & Zhang, Sizhe, 2019. "Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 477-500.
- Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
- Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
- Jie Xiong & Shuming Wang & Tsan Sheng Ng, 2021. "Robust Bilevel Resource Recovery Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2962-2992, September.
- Ertesvåg, Ivar S., 2005. "Energy, exergy, and extended-exergy analysis of the Norwegian society 2000," Energy, Elsevier, vol. 30(5), pages 649-675.
- Anna E. Tovkach & John C. Boyle & Enoch A. Nagelli & Corey M. James & Pamela L. Sheehan & Andrew R. Pfluger, 2023. "Structured decision making for assessment of solid waste-to-energy systems for decentralized onsite applications," Environment Systems and Decisions, Springer, vol. 43(1), pages 54-71, March.
- Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
- Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
- Jaroslav Pluskal & Radovan Šomplák & Dušan Hrabec & Vlastimír Nevrlý & Lars Magnus Hvattum, 2022. "Optimal location and operation of waste-to-energy plants when future waste composition is uncertain," Operational Research, Springer, vol. 22(5), pages 5765-5790, November.
- Nakhaii, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel & Sciubba, Enrico, 2024. "Evaluating ecological sustainability of mechanized and traditional systems of damaskrose production using extended exergy analysis," Ecological Modelling, Elsevier, vol. 488(C).
- Sciubba, Enrico, 2011. "A revised calculation of the econometric factors α- and β for the Extended Exergy Accounting method," Ecological Modelling, Elsevier, vol. 222(4), pages 1060-1066.
- Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
- Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
- Eryganov, Ivan & Šomplák, Radovan & Nevrlý, Vlastimír & Osicka, Ondrej & Procházka, Vít, 2022. "Cost-effective municipal unions formation within intermediate regions under prioritized waste energy recovery," Energy, Elsevier, vol. 256(C).
- Petar Sabev Varbanov & Hon Huin Chin & Alexandra-Elena Plesu Popescu & Stanislav Boldyryev, 2020. "Thermodynamics-Based Process Sustainability Evaluation," Energies, MDPI, vol. 13(9), pages 1-28, April.
More about this item
Keywords
Extended exergy accounting; Two-stage robust optimization; Municipal solid waste management; Facility location problem; Waste to energy technology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s036054422301318x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.