IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222002845.html
   My bibliography  Save this article

The asymmetric nexus of solar energy and environmental quality: Evidence from Top-10 solar energy-consuming countries

Author

Listed:
  • Yu, Jinna
  • Saydaliev, Hayot Berk
  • Liu, Zhen
  • Nazar, Raima
  • Ali, Sajid

Abstract

Solar energy is one of the least carbon-intensive techniques of generating electricity in an increasingly carbon-constrained world. Solar energy emits no emissions during power production, and life-cycle assessments indicate that it has a lower carbon footprint than fossil fuels. The study explores the asymmetric relationship between solar energy production and environmental quality in the top-10 solar energy-consumer countries (China, USA, Germany, Japan, Italy, Australia, India, Spain, United Kingdom, and France). A new technique, ‘Quantile-on-Quantile (QQ)’, is used by taking the panel data from 1996 to 2018. Carbon footprint is taken as a proxy for environmental quality. The findings investigate how solar energy quantiles impact quantiles of carbon footprint asymmetrically by offering a suitable framework for understanding the overall dependency pattern. The empirical findings show that, with the exception of India and Spain, solar energy production improves environmental quality by minimizing carbon footprint at various quantiles. Furthermore, the findings indicate that the degree of the asymmetrical link in the solar energy-environmental quality association varies by country, implying that governments must exercise individual attention and precaution when developing policies related to solar energy and environmental quality.

Suggested Citation

  • Yu, Jinna & Saydaliev, Hayot Berk & Liu, Zhen & Nazar, Raima & Ali, Sajid, 2022. "The asymmetric nexus of solar energy and environmental quality: Evidence from Top-10 solar energy-consuming countries," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222002845
    DOI: 10.1016/j.energy.2022.123381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Falguni Akter & Humaira Hasan Tinni & Parmita Banarjee & Mohammad Zaber Hossain, 2019. "Effects Of Heavy Metals (Cd, Zn And Cu) On Carbon, Nitrogen And Iron Mineralization In Soil," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 3(1), pages 33-38, May.
    2. Zhang, Dongyang & Mohsin, Muhammad & Rasheed, Abdul Khaliq & Chang, Youngho & Taghizadeh-Hesary, Farhad, 2021. "Public spending and green economic growth in BRI region: Mediating role of green finance," Energy Policy, Elsevier, vol. 153(C).
    3. Sharif, Arshian & Baris-Tuzemen, Ozge & Uzuner, Gizem & Ozturk, Ilhan & Sinha, Avik, 2020. "Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach," MPRA Paper 100044, University Library of Munich, Germany.
    4. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    5. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    6. Bilgili, Faik, 2012. "The impact of biomass consumption on CO2 emissions: Cointegration analyses with regime shifts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5349-5354.
    7. Sajid Ali & Zulkornain Yusop & Shivee Ranjanee Kaliappan & Lee Chin & Raima Nazar, 2021. "Asymmetric openness-growth nexus in 20 highly open OIC countries: Evidence from quantile-on-quantile regression approach," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 30(6), pages 882-905, August.
    8. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
    9. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    10. Shahbaz, Muhammad & Zakaria, Muhammad & Shahzad, Syed Jawad Hussain & Mahalik, Mantu Kumar, 2018. "The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach," Energy Economics, Elsevier, vol. 71(C), pages 282-301.
    11. Jaforullah, Mohammad & King, Alan, 2015. "Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence," Energy Economics, Elsevier, vol. 49(C), pages 711-717.
    12. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    13. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    14. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    15. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    16. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Al-mulali, Usama & Solarin, Sakiru Adebola & Sheau-Ting, Low & Ozturk, Ilhan, 2016. "Does moving towards renewable energy causes water and land inefficiency? An empirical investigation," Energy Policy, Elsevier, vol. 93(C), pages 303-314.
    18. Lin, Boqiang & Moubarak, Mohamed, 2014. "Renewable energy consumption – Economic growth nexus for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 111-117.
    19. Michaja Pehl & Anders Arvesen & Florian Humpenöder & Alexander Popp & Edgar G. Hertwich & Gunnar Luderer, 2017. "Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling," Nature Energy, Nature, vol. 2(12), pages 939-945, December.
    20. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.
    21. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
    22. Chang, Bisharat Hussain & Sharif, Arshian & Aman, Ameenullah & Suki, Norazah Mohd & Salman, Asma & Khan, Syed Abdul Rehman, 2020. "The asymmetric effects of oil price on sectoral Islamic stocks: New evidence from quantile-on-quantile regression approach," Resources Policy, Elsevier, vol. 65(C).
    23. Andrea Brock & Benjamin K. Sovacool & Andrew Hook, 2021. "Volatile Photovoltaics: Green Industrialization, Sacrifice Zones, and the Political Ecology of Solar Energy in Germany," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 111(6), pages 1756-1778, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alola, Andrew Adewale & Özkan, Oktay & Usman, Ojonugwa, 2023. "Examining crude oil price outlook amidst substitute energy price and household energy expenditure in the USA: A novel nonparametric multivariate QQR approach," Energy Economics, Elsevier, vol. 120(C).
    2. Bouadila, Salwa & Baddadi, Sara & Rehman, Tauseef-ur & Ayed, Rabeb, 2022. "Experimental investigation on the thermal appraisal of heat pipe-evacuated tube collector-based water heating system integrated with PCM," Renewable Energy, Elsevier, vol. 199(C), pages 382-394.
    3. Qin, Yue & Shang, Liyan & Lv, Zhenbo & Liu, Zhiming & He, Jianyu & Li, Xu & Binama, Maxime & Yang, Lingyun & Wang, Deyang, 2022. "Rapid formation of methane hydrate in environment-friendly leucine-based complex systems," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhu & Wei Fang & Saif Ur Rahman & Ahmad Imran Khan, 2023. "How solar-based renewable energy contributes to CO2 emissions abatement? Sustainable environment policy implications for solar industry," Energy & Environment, , vol. 34(2), pages 359-378, March.
    2. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    3. Liu, Zhen & Saydaliev, Hayot Berk & Lan, Jing & Ali, Sajid & Anser, Muhammad Khalid, 2022. "Assessing the effectiveness of biomass energy in mitigating CO2 emissions: Evidence from Top-10 biomass energy consumer countries," Renewable Energy, Elsevier, vol. 191(C), pages 842-851.
    4. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    5. Mishra, Shekhar & Sharif, Arshian & Khuntia, Sashikanta & Meo, Muhammad Saeed & Rehman Khan, Syed Abdul, 2019. "Does oil prices impede Islamic stock indices? Fresh insights from wavelet-based quantile-on-quantile approach," Resources Policy, Elsevier, vol. 62(C), pages 292-304.
    6. Wang, Mingsen & Zhong, Daojun & Ali, Sajid & Meo, Muhammad Saeed, 2024. "The windfall of green finance: Advancing environmental sustainability through wind energy," Renewable Energy, Elsevier, vol. 227(C).
    7. Chang, Lei & Moldir, Mukan & Zhang, Yuan & Nazar, Raima, 2023. "Asymmetric impact of green bonds on energy efficiency: Fresh evidence from quantile estimation," Utilities Policy, Elsevier, vol. 80(C).
    8. Mo, Bin & Nie, He & Zhao, Rongjie, 2024. "Dynamic nonlinear effects of geopolitical risks on commodities: Fresh evidence from quantile methods," Energy, Elsevier, vol. 288(C).
    9. Su, Chi-Wei & Pang, Li-Dong & Tao, Ran & Shao, Xuefeng & Umar, Muhammad, 2022. "Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    10. Sinha, Avik & Shah, Muhammad Ibrahim & Sengupta, Tuhin & Jiao, Zhilun, 2020. "Analyzing Technology-Emissions Association in Top-10 Polluted MENA Countries: How to Ascertain Sustainable Development by Quantile Modeling Approach," MPRA Paper 100253, University Library of Munich, Germany, revised 2020.
    11. Chang, Lei & Taghizadeh-Hesary, Farhad & Chen, Huangen & Mohsin, Muhammad, 2022. "Do green bonds have environmental benefits?," Energy Economics, Elsevier, vol. 115(C).
    12. Hashmi, Shabir Mohsin & Chang, Bisharat Hussain & Rong, Li, 2021. "Asymmetric effect of COVID-19 pandemic on E7 stock indices: Evidence from quantile-on-quantile regression approach," Research in International Business and Finance, Elsevier, vol. 58(C).
    13. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Renewable and non-renewable energy-growth-emissions linkages: Review of emerging trends with policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 275-291.
    14. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    15. Bakhsh, Satar & Zhang, Wei & Ali, Kishwar & Anas, Muhammad, 2024. "Transition towards environmental sustainability through financial inclusion, and digitalization in China: Evidence from novel quantile-on-quantile regression and wavelet coherence approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    16. Balsalobre-Lorente, Daniel & Ibáñez-Luzón, Lucia & Usman, Muhammad & Shahbaz, Muhammad, 2022. "The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries," Renewable Energy, Elsevier, vol. 185(C), pages 1441-1455.
    17. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    18. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model," Energy, Elsevier, vol. 119(C), pages 453-471.
    19. Mirziyoyeva, Ziroat & Salahodjaev, Raufhon, 2022. "Renewable energy and CO2 emissions intensity in the top carbon intense countries," Renewable Energy, Elsevier, vol. 192(C), pages 507-512.
    20. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.

    More about this item

    Keywords

    Environmental quality; QQ estimation; Carbon footprint; Solar energy production;
    All these keywords.

    JEL classification:

    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • P48 - Political Economy and Comparative Economic Systems - - Other Economic Systems - - - Legal Institutions; Property Rights; Natural Resources; Energy; Environment; Regional Studies
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222002845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.