IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221022283.html
   My bibliography  Save this article

Hydrogen production and temperature control for DME autothermal reforming process

Author

Listed:
  • Zhang, Tie-qing
  • Malik, Fawad Rahim
  • Jung, Seunghun
  • Kim, Young-Bae

Abstract

This study focuses on the control of dimethyl ether (DME) autothermal reforming (ATR) process integrated with proton exchange membrane fuel cells to provide adequate external power for an on-board reformer hydrogen vehicle. ATR reaction was made over Pd–Zn/γ-Al2O3 catalyst, which provides higher selectivity to the hydrogen due to its good oxidation and reforming activities. Catalyst activity was tested experimentally by varying the temperature. The hydrogen volume fraction is close to 45% at the optimal temperature of 400 °C. The objective of the process control scheme was to control the ATR reactor's temperature and the hydrogen production rate. A combination of the feedforward control and the closed-loop control (based on PID control) was applied wherein the DME, and air flow rates were adjusted automatically, and steam was supplied excessively to promote reactions. Due to its good oxidation and reforming activity, it had a high selectivity to hydrogen. The experimental results showed that the volume fraction of hydrogen in the hydrogen-rich gas is close to 45% at the optimum temperature of 400 °C. The control strategy could ensure that the hydrogen production rate changed with the change of fuel cell load and did not affect the temperature of the autothermal reformer. In this way, the stable operation of the reformer was realized, and the fuel cell had a sufficient supply of hydrogen.

Suggested Citation

  • Zhang, Tie-qing & Malik, Fawad Rahim & Jung, Seunghun & Kim, Young-Bae, 2022. "Hydrogen production and temperature control for DME autothermal reforming process," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221022283
    DOI: 10.1016/j.energy.2021.121980
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouzounidou, Martha & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2009. "A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies," Energy, Elsevier, vol. 34(10), pages 1733-1743.
    2. García, R. & Gil, M.V. & Rubiera, F. & Chen, D. & Pevida, C., 2021. "Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study," Energy, Elsevier, vol. 218(C).
    3. Kim, Jincheol & Kim, Taegyu, 2015. "Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source," Applied Energy, Elsevier, vol. 160(C), pages 945-953.
    4. Pachauri, Rupendra Kumar & Chauhan, Yogesh K., 2015. "A study, analysis and power management schemes for fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1301-1319.
    5. Chen, Wei-Hsin & Li, Shu-Cheng & Lim, Steven & Chen, Zih-Yu & Juan, Joon Ching, 2021. "Reaction and hydrogen production phenomena of ethanol steam reforming in a catalytic membrane reactor," Energy, Elsevier, vol. 220(C).
    6. Abdul Ghani, Ahmad & Torabi, Farshid & Ibrahim, Hussameldin, 2018. "Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses," Energy, Elsevier, vol. 144(C), pages 129-145.
    7. Tsourapas, Vasilis & Sun, Jing & Nickens, Anthony, 2008. "Modeling and dynamics of an autothermal JP5 fuel reformer for marine fuel cell applications," Energy, Elsevier, vol. 33(2), pages 300-310.
    8. Ramos-Paja, Carlos Andrés & Spagnuolo, Giovanni & Petrone, Giovanni & Mamarelis, Emilio, 2014. "A perturbation strategy for fuel consumption minimization in polymer electrolyte membrane fuel cells: Analysis, Design and FPGA implementation," Applied Energy, Elsevier, vol. 119(C), pages 21-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Ruiming & Yang, Zhongqing & Wang, Ziqi & Ran, Jingyu & Yan, Yunfei & Zhang, Li, 2022. "Novel non-noble metal catalyst with high efficiency and synergetic photocatalytic hydrolysis of ammonia borane and mechanism investigation," Energy, Elsevier, vol. 244(PB).
    2. Tie-Qing Zhang & Seunghun Jung & Young-Bae Kim, 2022. "Hydrogen Production System through Dimethyl Ether Autothermal Reforming, Based on Model Predictive Control," Energies, MDPI, vol. 15(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    2. Salemme, Lucia & Menna, Laura & Simeone, Marino, 2013. "Calculation of the energy efficiency of fuel processor – PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value," Energy, Elsevier, vol. 57(C), pages 368-374.
    3. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    4. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    8. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    9. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    10. Erika Michela Dematteis & Jussara Barale & Marta Corno & Alessandro Sciullo & Marcello Baricco & Paola Rizzi, 2021. "Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective," Energies, MDPI, vol. 14(19), pages 1-26, September.
    11. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    12. Dang, Chengxiong & Xia, Huanhuan & Yuan, Shuting & Wei, Xingchuan & Cai, Weiquan, 2022. "Green hydrogen production from sorption-enhanced steam reforming of biogas over a Pd/Ni–CaO-mayenite multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 314-322.
    13. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    14. Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Lee, Chun-Boo & Cho, Sung-Ho & Lee, Dong-Wook & Hwang, Kyung-Ran & Park, Jong-Soo & Kim, Sung-Hyun, 2014. "Combination of preferential CO oxidation and methanation in hybrid MCR (micro-channel reactor) for CO clean-up," Energy, Elsevier, vol. 78(C), pages 421-425.
    16. Benmouna, A. & Becherif, M. & Boulon, L. & Dépature, C. & Ramadan, Haitham S., 2021. "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control," Renewable Energy, Elsevier, vol. 178(C), pages 1291-1302.
    17. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    19. Phatiphat Thounthong & Pongsiri Mungporn & Babak Nahid-Mobarakeh & Nicu Bizon & Serge Pierfederici & Damien Guilbert, 2021. "Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    20. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221022283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.