IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000901.html
   My bibliography  Save this article

Novel non-noble metal catalyst with high efficiency and synergetic photocatalytic hydrolysis of ammonia borane and mechanism investigation

Author

Listed:
  • Fang, Ruiming
  • Yang, Zhongqing
  • Wang, Ziqi
  • Ran, Jingyu
  • Yan, Yunfei
  • Zhang, Li

Abstract

Herein, we successfully prepared a highly active non-noble metal CuNi/CNS, as a highly efficient synergistic catalyst for the hydrolysis of ammonia borane to hydrogen. 9.36% CuNi alloy nanoparticles loaded on the surface of g-C3N4 nanosheets at the molar ratio of 1:1 showed excellent photocatalytic activity for the hydrolysis of AB, and their TOF values under dark/visible light excitation were 12.6 and 26.6, respectively. Furthermore, after five cycles, the hydrogen production of Cu0.5Ni0.5/CNS in 10 min is only 5% lower than that of the fresh catalyst, fully demonstrating that the catalyst has excellent reusability. Photoelectrochemical characterizations and theoretical results indicate that the transition metal nanoparticles deposited on the g-C3N4 nanosheets modified the band structure, the bandgap value of 2.77 eV (CNS) reduce to 2.58 eV (Cu/CNS), 2.55 eV (Ni/CNS) and 2.52 eV (Cu0.5Ni0.5/CNS). The 3d orbits of Cu and Ni are mainly involved in the valence band composition of the catalyst system, which not only greatly changes the original orbital structure, reduces the bandgap, but also enhances the transmission of photoelectron and hole pair between the triazine rings. In addition, the synergistic effect of alloy effect, Mott-Schottky junction and the LSPR effect improve the photocatalytic activity of the CuNi/CNS catalyst.

Suggested Citation

  • Fang, Ruiming & Yang, Zhongqing & Wang, Ziqi & Ran, Jingyu & Yan, Yunfei & Zhang, Li, 2022. "Novel non-noble metal catalyst with high efficiency and synergetic photocatalytic hydrolysis of ammonia borane and mechanism investigation," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000901
    DOI: 10.1016/j.energy.2022.123187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sayed, Mohamed Adel & Abukhadra, Mostafa R. & Salam, Mohamed Abdel & Yakout, Sobhy M. & Abdeltawab, Ahmed A. & Aziz, Ibrahim M., 2019. "Photocatalytic hydrogen generation from raw water using zeolite/polyaniline@Ni2O3 nanocomposite as a novel photo-electrode," Energy, Elsevier, vol. 187(C).
    2. Bob Y. Zheng & Hangqi Zhao & Alejandro Manjavacas & Michael McClain & Peter Nordlander & Naomi J. Halas, 2015. "Distinguishing between plasmon-induced and photoexcited carriers in a device geometry," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Katla, Daria & Jurczyk, Michał & Skorek-Osikowska, Anna & Uchman, Wojciech, 2021. "Analysis of the integrated system of electrolysis and methanation units for the production of synthetic natural gas (SNG)," Energy, Elsevier, vol. 237(C).
    4. Zeng, Zilong & Jing, Dengwei & Guo, Liejin, 2021. "Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam," Energy, Elsevier, vol. 228(C).
    5. Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
    6. Valero-Pedraza, María José & Martín-Cortés, Alexandra & Navarrete, Alexander & Bermejo, María Dolores & Martín, Ángel, 2015. "Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids," Energy, Elsevier, vol. 91(C), pages 742-750.
    7. Sun, Hongyue & Ebadi, Abdol Ghaffar & Toughani, Mohsen & Nowdeh, Saber Arabi & Naderipour, Amirreza & Abdullah, Aldrin, 2022. "Designing framework of hybrid photovoltaic-biowaste energy system with hydrogen storage considering economic and technical indices using whale optimization algorithm," Energy, Elsevier, vol. 238(PA).
    8. Wu, Jing & Feng, Yujie & Li, Da & Han, Xiaoyu & Liu, Jia, 2019. "Efficient photocatalytic CO2 reduction by P–O linked g-C3N4/TiO2-nanotubes Z-scheme composites," Energy, Elsevier, vol. 178(C), pages 168-175.
    9. Zhang, Tie-qing & Malik, Fawad Rahim & Jung, Seunghun & Kim, Young-Bae, 2022. "Hydrogen production and temperature control for DME autothermal reforming process," Energy, Elsevier, vol. 239(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    2. Muhammad Usman & Atif Jahanger & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "Do Nuclear Energy, Renewable Energy, and Environmental-Related Technologies Asymmetrically Reduce Ecological Footprint? Evidence from Pakistan," Energies, MDPI, vol. 15(9), pages 1-24, May.
    3. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    4. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    5. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    6. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    7. Mohsen Khalili & Touhid Poursheykh Aliasghari & Ebrahim Seifi Najmi & Almoataz Y. Abdelaziz & A. Abu-Siada & Saber Arabi Nowdeh, 2022. "Optimal Allocation of Distributed Thyristor Controlled Series Compensators in Power System Considering Overload, Voltage, and Losses with Reliability Effect," Energies, MDPI, vol. 15(20), pages 1-25, October.
    8. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    9. Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.
    10. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    11. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    12. Feng, Li & Liu, Jiajun & Lu, Haitao & Liu, Bingzhi & Chen, Yuning & Wu, Shenyu, 2022. "Robust operation of distribution network based on photovoltaic/wind energy resources in condition of COVID-19 pandemic considering deterministic and probabilistic approaches," Energy, Elsevier, vol. 261(PB).
    13. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    14. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    15. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    16. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    17. Wang, Yingjie & Wang, Mingjun & Jia, Kang & Tian, Wenxi & Qiu, Suizheng & Su, Guanghui, 2022. "Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system," Energy, Elsevier, vol. 256(C).
    18. Saman Shahrokhi & Adel El-Shahat & Fatemeh Masoudinia & Foad H. Gandoman & Shady H. E. Abdel Aleem, 2021. "Sizing and Energy Management of Parking Lots of Electric Vehicles Based on Battery Storage with Wind Resources in Distribution Network," Energies, MDPI, vol. 14(20), pages 1-21, October.
    19. Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
    20. Zhang, Xinru & Hou, Lei & Liu, Jiaquan & Yang, Kai & Chai, Chong & Li, Yanhao & He, Sichen, 2022. "Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.