IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp1221-1233.html
   My bibliography  Save this article

A minimal simplified model for assessing and devising global LNG equilibrium trade portfolios while maximizing energy security

Author

Listed:
  • J. Magnier, Hamza
  • Jrad, Asmaa

Abstract

The global environmental concerns associated with the increased energy demand have promoted the use of natural gas as a low-carbon fuel. This caused an increase in LNG supply and demand coupled with the need for useful tools to devise secure LNG trade schemes. While most studies focused either on assessing the security of past/current LNG trade, or on extrapolating LNG trade trends in the future, this study introduces a new simplified coarse-grained model that devises optimized LNG import/export schemes ensuring secure trade for suppliers and markets. The model is based only on four variables: LNG demand, LNG liquefaction capacity, utilization of liquefaction capacity, and transport distance. First, the model was used to generate LNG trade portfolios for Asia Pacific and Europe between 2003 and 2016. The HHI index then showed that the model always devised a more diversified, secure LNG trade. The different import strategies of the two markets and their evolution with time was highlighted, revealing more secure import regulations by AP. Finally, the model was used to forecast LNG import portfolios for AP and EU in 2030, which emphasized a significant change in the market share of conventional exporters with the introduction of new US and Australian LNG.

Suggested Citation

  • J. Magnier, Hamza & Jrad, Asmaa, 2019. "A minimal simplified model for assessing and devising global LNG equilibrium trade portfolios while maximizing energy security," Energy, Elsevier, vol. 173(C), pages 1221-1233.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1221-1233
    DOI: 10.1016/j.energy.2019.02.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohen, Gail & Joutz, Frederick & Loungani, Prakash, 2011. "Measuring energy security: Trends in the diversification of oil and natural gas supplies," Energy Policy, Elsevier, vol. 39(9), pages 4860-4869, September.
    2. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    3. Martchamadol, Jutamanee & Kumar, S., 2012. "Thailand's energy security indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6103-6122.
    4. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    5. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "An assessment of Taiwan’s energy policy using multi-dimensional energy security indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 301-311.
    6. Jang, Jinyong & Lee, Jongsu & Yoo, Seung-Hoon, 2014. "The public׳s willingness to pay for securing a reliable natural gas supply in Korea," Energy Policy, Elsevier, vol. 69(C), pages 3-13.
    7. Stirling, Andy, 2010. "Multicriteria diversity analysis: A novel heuristic framework for appraising energy portfolios," Energy Policy, Elsevier, vol. 38(4), pages 1622-1634, April.
    8. Cabalu, Helen, 2010. "Indicators of security of natural gas supply in Asia," Energy Policy, Elsevier, vol. 38(1), pages 218-225, January.
    9. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    10. Hughes, Larry, 2012. "A generic framework for the description and analysis of energy security in an energy system," Energy Policy, Elsevier, vol. 42(C), pages 221-231.
    11. Kisel, Einari & Hamburg, Arvi & Härm, Mihkel & Leppiman, Ando & Ots, Märt, 2016. "Concept for Energy Security Matrix," Energy Policy, Elsevier, vol. 95(C), pages 1-9.
    12. Shaffer, Brenda, 2013. "Natural gas supply stability and foreign policy," Energy Policy, Elsevier, vol. 56(C), pages 114-125.
    13. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali & Mahendra Dev, S., 2017. "Sustainable energy security for India: An assessment of the energy supply sub-system," Energy Policy, Elsevier, vol. 103(C), pages 127-144.
    14. Ren, Jingzheng & Sovacool, Benjamin K., 2014. "Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics," Energy, Elsevier, vol. 76(C), pages 838-849.
    15. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2014. "A dynamic analysis on global natural gas trade network," Applied Energy, Elsevier, vol. 132(C), pages 23-33.
    16. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    17. Biresselioglu, Mehmet Efe & Yelkenci, Tezer & Oz, Ibrahim Onur, 2015. "Investigating the natural gas supply security: A new perspective," Energy, Elsevier, vol. 80(C), pages 168-176.
    18. von Hippel, David & Suzuki, Tatsujiro & Williams, James H. & Savage, Timothy & Hayes, Peter, 2011. "Energy security and sustainability in Northeast Asia," Energy Policy, Elsevier, vol. 39(11), pages 6719-6730.
    19. Shaikh, Faheemullah & Ji, Qiang & Shaikh, Pervez Hameed & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2017. "Forecasting China’s natural gas demand based on optimised nonlinear grey models," Energy, Elsevier, vol. 140(P1), pages 941-951.
    20. Narula, Kapil & Sudhakara Reddy, B. & Pachauri, Shonali, 2017. "Sustainable Energy Security for India: An assessment of energy demand sub-system," Applied Energy, Elsevier, vol. 186(P2), pages 126-139.
    21. Le Coq, Chloé & Paltseva, Elena, 2009. "Measuring the security of external energy supply in the European Union," Energy Policy, Elsevier, vol. 37(11), pages 4474-4481, November.
    22. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    23. Nanduri, Vishnu & Saavedra-Antolínez, Ivan, 2013. "A competitive Markov decision process model for the energy–water–climate change nexus," Applied Energy, Elsevier, vol. 111(C), pages 186-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiaman & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin & Liu, Guixian, 2021. "Natural gas trade network of countries and regions along the belt and road: Where to go in the future?," Resources Policy, Elsevier, vol. 71(C).
    2. Martin Jurkovič & Tomáš Kalina & Ondrej Stopka & Piotr Gorzelanczyk & Borna Abramović, 2021. "Economic Calculation and Operations Research in Terms of LNG Carriage by Water Transport: A Case Study of the Port of Bratislava," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    3. Yuping Jin & Yanbin Yang & Wei Liu, 2022. "Finding Global Liquefied Natural Gas Potential Trade Relations Based on Improved Link Prediction," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    2. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    3. Ye, Ruike & Zhou, Yunheng & Chen, Jiawei & Tu, Kevin, 2021. "Natural gas security evaluation from a supply vs. demand perspective: A quantitative application of four As," Energy Policy, Elsevier, vol. 156(C).
    4. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    5. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Pečiulytė, Sigita & Žutautaitė, Inga, 2017. "Integrated energy security assessment," Energy, Elsevier, vol. 138(C), pages 890-901.
    6. Zhang, Long & Yu, Jing & Sovacool, Benjamin K. & Ren, Jingzheng, 2017. "Measuring energy security performance within China: Toward an inter-provincial prospective," Energy, Elsevier, vol. 125(C), pages 825-836.
    7. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    8. Pin Li & Jin-Suo Zhang, 2018. "A New Hybrid Method for China’s Energy Supply Security Forecasting Based on ARIMA and XGBoost," Energies, MDPI, vol. 11(7), pages 1-28, June.
    9. Thauan Santos & Amaro Olímpio Pereira Júnior & Emilio Lèbre La Rovere, 2017. "Evaluating Energy Policies through the Use of a Hybrid Quantitative Indicator-Based Approach: The Case of Mercosur," Energies, MDPI, vol. 10(12), pages 1-15, December.
    10. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
    11. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    12. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    14. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    15. García-Gusano, Diego & Iribarren, Diego & Garraín, Daniel, 2017. "Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers," Applied Energy, Elsevier, vol. 190(C), pages 891-901.
    16. Karatayev, Marat & Hall, Stephen, 2020. "Establishing and comparing energy security trends in resource-rich exporting nations (Russia and the Caspian Sea region)," Resources Policy, Elsevier, vol. 68(C).
    17. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    18. Dubský, Zbyněk & Tichý, Lukáš & Pavliňák, Daniel, 2021. "A quantifiable approach to the selection of criteria and indexation for comparison of the gas pipeline projects leading to the EU: Diversification rationality against securitisation?," Energy, Elsevier, vol. 225(C).
    19. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    20. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1221-1233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.