IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp1148-1160.html
   My bibliography  Save this article

Environmental load assessment for an integrated design of microalgae system of palm oil mill in Indonesia

Author

Listed:
  • Sasongko, Nugroho Adi
  • Noguchi, Ryozo
  • Ahamed, Tofael

Abstract

The environmental load of continuous bioenergy production from palm oil (Elaeis guineensis) included with a proposed 10 ha of microalgae production system were assessed to be implemented in Indonesia. Material and energy balances, greenhouse gas (GHG) emission, nutrient requirement and also water scarcity during bioenergy production cycle were evaluated. The integrated system was developed for 60 tons h−1 of fresh fruit bunch (FFB) processing capacity of a conventional mill. Aggregate of energy-profit ratio from the proposed system was 5.20, which indicates a positive balance. The total water footprint for each palm oil and microalgae cultivation was 3.18 and 2.85 m3 kg−1 of biodiesel production, respectively. Microalgae mix-culture has the potential to treat organic compounds from palm oil mill effluent (POME) and combined with flue gases from biomass and biogas power plant as the alternative nutrient sources contributed to net-reduction of GHG emission for 158.8 tons ha−1 of microalgae culture, annually. The integrated system produced 26,471 tons of biodiesel that included 223 tons from microalgae and contribute to 39.90% of total GHG emission reduction from diesel fuel substitute. Additional co-product of 520.33 tons year−1 of animal feed from defatted biomass also possible to be produced and have potential for environmental benefits.

Suggested Citation

  • Sasongko, Nugroho Adi & Noguchi, Ryozo & Ahamed, Tofael, 2018. "Environmental load assessment for an integrated design of microalgae system of palm oil mill in Indonesia," Energy, Elsevier, vol. 159(C), pages 1148-1160.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:1148-1160
    DOI: 10.1016/j.energy.2018.03.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830553X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dicky Simorangkir, 2007. "Fire use: Is it really the cheaper land preparation method for large-scale plantations?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(1), pages 147-164, January.
    2. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    3. Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.
    4. Siong Lee Koh & Yun Seng Lim & Stella Morris, 2011. "Cost Effective Options for Greenhouse Gas (GHG) Emission Reduction in the Power Sector for Developing Economies — A Case Study in Sabah, Malaysia," Energies, MDPI, vol. 4(5), pages 1-24, May.
    5. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    6. Johari, Anwar & Nyakuma, Bemgba Bevan & Mohd Nor, Shadiah Husna & Mat, Ramli & Hashim, Haslenda & Ahmad, Arshad & Yamani Zakaria, Zaki & Tuan Abdullah, Tuan Amran, 2015. "The challenges and prospects of palm oil based biodiesel in Malaysia," Energy, Elsevier, vol. 81(C), pages 255-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phuang, Zhen Xin & Woon, Kok Sin & Wong, Khai Jian & Liew, Peng Yen & Hanafiah, Marlia Mohd, 2021. "Unlocking the environmental hotspots of palm biodiesel upstream production in Malaysia via life cycle assessment," Energy, Elsevier, vol. 232(C).
    2. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    3. Braud, L. & McDonnell, K. & Murphy, F., 2023. "Environmental life cycle assessment of algae systems: Critical review of modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    2. Jensen, Henning Tarp & Keogh-Brown, Marcus R. & Shankar, Bhavani & Aekplakorn, Wichai & Basu, Sanjay & Cuevas, Soledad & Dangour, Alan D. & Gheewala, Shabbir H. & Green, Rosemary & Joy, Edward J.M. & , 2019. "Palm oil and dietary change: Application of an integrated macroeconomic, environmental, demographic, and health modelling framework for Thailand," Food Policy, Elsevier, vol. 83(C), pages 92-103.
    3. Walter Falcon & Gracia Hadiwidjaja & Ryan Edwards & Matthew Higgins & Rosamond Naylor & Sudarno Sumarto, 2022. "Using Conditional Cash Payments to Prevent Land-Clearing Fires: Cautionary Findings from Indonesia," Agriculture, MDPI, vol. 12(7), pages 1-17, July.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Anni Arumsari Fitriany & Piotr J. Flatau & Khoirunurrofik Khoirunurrofik & Nelly Florida Riama, 2021. "Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    6. George F. Antonious & Eric T. Turley & Mohammad H. Dawood, 2020. "Monitoring Soil Enzymes Activity before and after Animal Manure Application," Agriculture, MDPI, vol. 10(5), pages 1-12, May.
    7. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    8. Najat Omran & Amir Hamzah Sharaai & Ahmad Hariza Hashim, 2021. "Visualization of the Sustainability Level of Crude Palm Oil Production: A Life Cycle Approach," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    9. Uusitalo, V. & Väisänen, S. & Havukainen, J. & Havukainen, M. & Soukka, R. & Luoranen, M., 2014. "Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil," Renewable Energy, Elsevier, vol. 69(C), pages 103-113.
    10. M. Faizal & S. Ateeb, 2018. "Energy, Economic And Environmental Impact Of Palm Oil Biodiesel In Malaysia. Abstract: Malaysia is among the lushest places on Earth with nearly countless varieties of flora and fauna residing within ," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 24-26, September.
    11. Xu, H. & Lee, U. & Wang, M., 2020. "Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Hidegh, Gyöngyvér & Csemány, Dávid & Vámos, János & Kavas, László & Józsa, Viktor, 2021. "Mixture Temperature-Controlled combustion of different biodiesels and conventional fuels," Energy, Elsevier, vol. 234(C).
    13. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar Dayal & Drogui, Patrick & Surampalli, Rao Y., 2016. "Ultrasonication aided biodiesel production from one-step and two-step transesterification of sludge derived lipid," Energy, Elsevier, vol. 94(C), pages 401-408.
    14. Velásquez, H.I. & De Oliveira, S. & Benjumea, P. & Pellegrini, L.F., 2013. "Exergo-environmental evaluation of liquid biofuel production processes," Energy, Elsevier, vol. 54(C), pages 97-103.
    15. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    16. Samuel-Soma M. Ajibade & Festus Victor Bekun & Festus Fatai Adedoyin & Bright Akwasi Gyamfi & Anthonia Oluwatosin Adediran, 2023. "Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021)," Clean Technol., MDPI, vol. 5(2), pages 1-21, April.
    17. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    18. Marcus Keogh-Brown & Henning Tarp Jensen & Bhavani Shankar & Sanjay Basu & Soledad Cuevas & Alan Dangour & Shabbir H. Gheewala & Rosemary Green & Edward Joy & Nalitra Thaiprasert & Richard Smith, 2017. "An integrated macroeconomic, demographic and health modelling framework for palm oil policies in Thailand," EcoMod2017 10569, EcoMod.
    19. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    20. Ariodillah Hidayat & Bernadette Robiani & Taufiq Marwa & Suhel Suhel, 2023. "Competitiveness, Market Structure, and Energy Policies: A Case Study of the World s Largest Crude Palm Oil Exporter," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 111-121, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:1148-1160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.