IDEAS home Printed from
   My bibliography  Save this article

Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production


  • Lam, Man Kee
  • Lee, Keat Teong


Cultivating microalgae at industrial scale for biodiesel production required substantial amount of mineral fertilizer, typically nitrogen and phosphorus. In fact, the production of mineral fertilizer implies the usage of energy and fossil fuels resulting to unsustainable practise in a long term. On the other hand, organic fertilizer which is derived from food waste, biomass or manure also contains high value of nutrients that can support microalgae growth. Hence, in the present study, the potential of using organic fertilizer as an alternative nutrient source to cultivate Chlorella vulgaris was investigated. Under the supplement of organic nutrients, it was found that C. vulgaris grown favourably under the following conditions: initial nitrate content of 26.67mg/L, 24h of continuous illumination and pH of 5. Nevertheless, slow growth rate was observed when cultivating C. vulgaris under open environment; a reduction of 27% was recorded in comparison with controlled environment. On the other hand, it was possible to reutilize the water to re-cultivate C. vulgaris. This observation reflects the high adaptability of C. vulgaris towards the surrounding environment and suitability to be grown under outdoor conditions. Total lipid of 18.1% from C. vulgaris biomass was successfully extracted and the fatty acids methyl ester profile was proven to be suitable for making biodiesel.

Suggested Citation

  • Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.
  • Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:303-308
    DOI: 10.1016/j.apenergy.2012.01.075

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kita, K. & Okada, S. & Sekino, H. & Imou, K. & Yokoyama, S. & Amano, T., 2010. "Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery," Applied Energy, Elsevier, vol. 87(7), pages 2420-2423, July.
    2. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    3. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    4. Rasoul-Amini, Sara & Montazeri-Najafabady, Nima & Mobasher, Mohammad Ali & Hoseini-Alhashemi, Samira & Ghasemi, Younes, 2011. "Chlorella sp.: A new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor," Applied Energy, Elsevier, vol. 88(10), pages 3354-3356.
    5. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    6. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    7. Zeng, Xianhai & Danquah, Michael K. & Chen, Xiao Dong & Lu, Yinghua, 2011. "Microalgae bioengineering: From CO2 fixation to biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3252-3260, August.
    8. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    9. Qiu, Fengxian & Li, Yihuai & Yang, Dongya & Li, Xiaohua & Sun, Ping, 2011. "Biodiesel production from mixed soybean oil and rapeseed oil," Applied Energy, Elsevier, vol. 88(6), pages 2050-2055, June.
    10. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    11. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    12. Wu, Xuan & Leung, Dennis Y.C., 2011. "Optimization of biodiesel production from camelina oil using orthogonal experiment," Applied Energy, Elsevier, vol. 88(11), pages 3615-3624.
    13. Srinivasan, Sunderasan, 2009. "The food v. fuel debate: A nuanced view of incentive structures," Renewable Energy, Elsevier, vol. 34(4), pages 950-954.
    14. Subhadra, Bobban G. & Edwards, Mark, 2011. "Coproduct market analysis and water footprint of simulated commercial algal biorefineries," Applied Energy, Elsevier, vol. 88(10), pages 3515-3523.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    2. Lam, Man Kee & Yusoff, Mohammad Iqram & Uemura, Yoshimitsu & Lim, Jun Wei & Khoo, Choon Gek & Lee, Keat Teong & Ong, Hwai Chyuan, 2017. "Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies," Renewable Energy, Elsevier, vol. 103(C), pages 197-207.
    3. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    4. repec:eee:energy:v:140:y:2017:i:p1:p:757-765 is not listed on IDEAS
    5. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    6. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    7. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:303-308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.