IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production

Listed author(s):
  • Lam, Man Kee
  • Lee, Keat Teong
Registered author(s):

    Cultivating microalgae at industrial scale for biodiesel production required substantial amount of mineral fertilizer, typically nitrogen and phosphorus. In fact, the production of mineral fertilizer implies the usage of energy and fossil fuels resulting to unsustainable practise in a long term. On the other hand, organic fertilizer which is derived from food waste, biomass or manure also contains high value of nutrients that can support microalgae growth. Hence, in the present study, the potential of using organic fertilizer as an alternative nutrient source to cultivate Chlorella vulgaris was investigated. Under the supplement of organic nutrients, it was found that C. vulgaris grown favourably under the following conditions: initial nitrate content of 26.67mg/L, 24h of continuous illumination and pH of 5. Nevertheless, slow growth rate was observed when cultivating C. vulgaris under open environment; a reduction of 27% was recorded in comparison with controlled environment. On the other hand, it was possible to reutilize the water to re-cultivate C. vulgaris. This observation reflects the high adaptability of C. vulgaris towards the surrounding environment and suitability to be grown under outdoor conditions. Total lipid of 18.1% from C. vulgaris biomass was successfully extracted and the fatty acids methyl ester profile was proven to be suitable for making biodiesel.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000815
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 94 (2012)
    Issue (Month): C ()
    Pages: 303-308

    as
    in new window

    Handle: RePEc:eee:appene:v:94:y:2012:i:c:p:303-308
    DOI: 10.1016/j.apenergy.2012.01.075
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2011. "Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production," Applied Energy, Elsevier, vol. 88(10), pages 3411-3424.
    2. Zeng, Xianhai & Danquah, Michael K. & Chen, Xiao Dong & Lu, Yinghua, 2011. "Microalgae bioengineering: From CO2 fixation to biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3252-3260, August.
    3. Qiu, Fengxian & Li, Yihuai & Yang, Dongya & Li, Xiaohua & Sun, Ping, 2011. "Biodiesel production from mixed soybean oil and rapeseed oil," Applied Energy, Elsevier, vol. 88(6), pages 2050-2055, June.
    4. Rasoul-Amini, Sara & Montazeri-Najafabady, Nima & Mobasher, Mohammad Ali & Hoseini-Alhashemi, Samira & Ghasemi, Younes, 2011. "Chlorella sp.: A new strain with highly saturated fatty acids for biodiesel production in bubble-column photobioreactor," Applied Energy, Elsevier, vol. 88(10), pages 3354-3356.
    5. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    6. Subhadra, Bobban G. & Edwards, Mark, 2011. "Coproduct market analysis and water footprint of simulated commercial algal biorefineries," Applied Energy, Elsevier, vol. 88(10), pages 3515-3523.
    7. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    8. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    9. Srinivasan, Sunderasan, 2009. "The food v. fuel debate: A nuanced view of incentive structures," Renewable Energy, Elsevier, vol. 34(4), pages 950-954.
    10. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    11. Kita, K. & Okada, S. & Sekino, H. & Imou, K. & Yokoyama, S. & Amano, T., 2010. "Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery," Applied Energy, Elsevier, vol. 87(7), pages 2420-2423, July.
    12. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    13. Amaro, Helena M. & Guedes, A. Catarina & Malcata, F. Xavier, 2011. "Advances and perspectives in using microalgae to produce biodiesel," Applied Energy, Elsevier, vol. 88(10), pages 3402-3410.
    14. Wu, Xuan & Leung, Dennis Y.C., 2011. "Optimization of biodiesel production from camelina oil using orthogonal experiment," Applied Energy, Elsevier, vol. 88(11), pages 3615-3624.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:94:y:2012:i:c:p:303-308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.