IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics136403212100945x.html
   My bibliography  Save this article

Multi-objective optimization of integrated crop-livestock system for biofuels production: A life-cycle approach

Author

Listed:
  • Esteves, Elisa M.M.
  • Brigagão, George V.
  • Morgado, Cláudia R.V.

Abstract

A method aiming the optimization of biofuels production from integrated crop-livestock system is presented, for a farm in operation with multiple agropastoral activities. For this purpose, multi-objective optimization is applied with support of a life-cycle assessment framework. The validity test of proposed methods adopts as object of study a plausible farm in the Brazilian Midwest, with soybean and maize crop rotation along with cattle fattening in pasture and feedlots, which gives origin to various biofuels chains: biodiesel, bioethanol and biogas. Decisions are based on two life-cycle performance metrics: greenhouse gas emissions and energy balance. Impacts on biofuel life-cycles are apportioned according to the market value of co-products. Strong influence of allocation factors on performance metrics is shown. Soybean biodiesel has greater energy potential than bioethanol and biogas, while generating the lowest greenhouse gas emissions by kg of biofuel. However, high population density of animal fattening in feedlots makes this activity have a greater energy balance by footprint than agriculture, as long as previous phases of animal growth do not occur in the farm. Multi-objective optimization shows that in general the pasture share should be minimized, so the decision relies on sizing the feedlot and agricultural areas. If equal weights are applied to objective-functions, the resulting farm distribution is 88.58% agriculture, 10% pasture, and 1.42% feedlot. The present model can be used to evaluate other systems and further metrics can be applied, allowing land distribution among different agropastoral activities, helping to guide private and public decision-making in the agro-energy sector.

Suggested Citation

  • Esteves, Elisa M.M. & Brigagão, George V. & Morgado, Cláudia R.V., 2021. "Multi-objective optimization of integrated crop-livestock system for biofuels production: A life-cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s136403212100945x
    DOI: 10.1016/j.rser.2021.111671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100945X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaurav, N. & Sivasankari, S. & Kiran, GS & Ninawe, A. & Selvin, J., 2017. "Utilization of bioresources for sustainable biofuels: A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 205-214.
    2. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    3. Ahmad Romadhoni Surya Putra, R. & Liu, Zhen & Lund, Mogens, 2017. "The impact of biogas technology adoption for farm households – Empirical evidence from mixed crop and livestock farming systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1371-1378.
    4. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Abudula, Abuliti & Guan, Guoqing, 2020. "Small-scale biomass gasification systems for power generation (<200 kW class): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    6. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    7. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    8. Troldborg, Mads & Heslop, Simon & Hough, Rupert L., 2014. "Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1173-1184.
    9. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
    10. Nguyen, Trung H. & Granger, Julien & Pandya, Deval & Paustian, Keith, 2019. "High-resolution multi-objective optimization of feedstock landscape design for hybrid first and second generation biorefineries," Applied Energy, Elsevier, vol. 238(C), pages 1484-1496.
    11. Kalyanmoy Deb & Kalyanmoy Deb, 2014. "Multi-objective Optimization," Springer Books, in: Edmund K. Burke & Graham Kendall (ed.), Search Methodologies, edition 2, chapter 0, pages 403-449, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    2. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Sitorus, Fernando & Brito-Parada, Pablo R., 2020. "A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    7. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    8. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    9. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    10. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    11. Jensen, Henning Tarp & Keogh-Brown, Marcus R. & Shankar, Bhavani & Aekplakorn, Wichai & Basu, Sanjay & Cuevas, Soledad & Dangour, Alan D. & Gheewala, Shabbir H. & Green, Rosemary & Joy, Edward J.M. & , 2019. "Palm oil and dietary change: Application of an integrated macroeconomic, environmental, demographic, and health modelling framework for Thailand," Food Policy, Elsevier, vol. 83(C), pages 92-103.
    12. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    13. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    14. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    15. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    16. Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
    17. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    18. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    19. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    20. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s136403212100945x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.