IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp1175-1185.html
   My bibliography  Save this article

Passive measures for preventing summer overheating in industrial buildings under consideration of varying manufacturing process loads

Author

Listed:
  • Gourlis, Georgios
  • Kovacic, Iva

Abstract

Industrial buildings implement retrofit measures to reduce energy demand for space conditioning, with primary focus given to heating loads, as they often lack cooling systems. An optimized refurbishment should be able though to tackle summer overheating, since studies indicate an increase in the frequency and intensity of hot days during summer. Furthermore production fluctuations have an impact on manufacturing process loads and thus internal heat gains, affecting building performance. If production levels alter in the long term, an initially satisfying option may fail to respond to the future conditions. This paper presents retrofit alternatives for a case study in Austria. A thorough picture of the initial state was achieved by measurements of indoor climate conditions. Based on a calibrated dynamic thermal simulation model, optimization measures and natural ventilation patterns were tested under current production levels and hypothetical future scenarios for their adequacy to minimize overheating without the installation of an active cooling system. Results were classified and evaluated by adaptive comfort and workplace regulation criteria, while differences between the two approaches were discussed. There are measure constellations diminishing overheating risk for all internal heat gain conditions, whose applicability can adapt to the prevailing needs of the facility at the time.

Suggested Citation

  • Gourlis, Georgios & Kovacic, Iva, 2017. "Passive measures for preventing summer overheating in industrial buildings under consideration of varying manufacturing process loads," Energy, Elsevier, vol. 137(C), pages 1175-1185.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1175-1185
    DOI: 10.1016/j.energy.2017.05.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jenkins, David P. & Patidar, Sandhya & Banfill, Phil & Gibson, Gavin, 2014. "Developing a probabilistic tool for assessing the risk of overheating in buildings for future climates," Renewable Energy, Elsevier, vol. 61(C), pages 7-11.
    2. John P. Dunne & Ronald J. Stouffer & Jasmin G. John, 2013. "Reductions in labour capacity from heat stress under climate warming," Nature Climate Change, Nature, vol. 3(6), pages 563-566, June.
    3. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    4. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "The influence of an estimated energy saving due to natural ventilation on the Mexican energy system," Energy, Elsevier, vol. 64(C), pages 1080-1091.
    5. Brinks, Pascal & Kornadt, Oliver & Oly, René, 2016. "Development of concepts for cost-optimal nearly zero-energy buildings for the industrial steel building sector," Applied Energy, Elsevier, vol. 173(C), pages 343-354.
    6. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    7. Hübler, Michael & Klepper, Gernot & Peterson, Sonja, 2008. "Costs of climate change: The effects of rising temperatures on health and productivity in Germany," Ecological Economics, Elsevier, vol. 68(1-2), pages 381-393, December.
    8. Dodoo, Ambrose & Gustavsson, Leif, 2016. "Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios," Energy, Elsevier, vol. 97(C), pages 534-548.
    9. Anna Laura Pisello, 2015. "Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings," Energies, MDPI, vol. 8(3), pages 1-14, March.
    10. Wang, Xiaoxin & Kendrick, Christopher & Ogden, Raymond & Walliman, Nicholas & Baiche, Bousmaha, 2013. "A case study on energy consumption and overheating for a UK industrial building with rooflights," Applied Energy, Elsevier, vol. 104(C), pages 337-344.
    11. Hiyama, Kyosuke & Glicksman, Leon, 2015. "Preliminary design method for naturally ventilated buildings using target air change rate and natural ventilation potential maps in the United States," Energy, Elsevier, vol. 89(C), pages 655-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    2. Carlos A. Espino-Reyes & Naghelli Ortega-Avila & Norma A. Rodriguez-Muñoz, 2020. "Energy Savings on an Industrial Building in Different Climate Zones: Envelope Analysis and PV System Implementation," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    3. Xiaojing Meng & Beibei Wei & Yingni Zhai, 2020. "Sensitivity Analysis of Envelope Design Parameters of Industrial Buildings with Natural Ventilation," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    4. Alexander Brem & Ken Bruton & Paul D. O’Sullivan, 2021. "Assessing the Risk to Indoor Thermal Environments on Industrial Sites Offering AHU Capacity for Demand Response," Energies, MDPI, vol. 14(19), pages 1-28, October.
    5. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    6. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    7. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.
    8. Marco Noro & Simone Mancin & Filippo Busato & Francesco Cerboni, 2023. "Innovative Hybrid Condensing Radiant System for Industrial Heating: An Energy and Economic Analysis," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    9. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    2. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    3. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    4. Mehmood, Sajid & Lizana, Jesus & Núñez-Peiró, Miguel & Maximov, Serguey A. & Friedrich, Daniel, 2022. "Resilient cooling pathway for extremely hot climates in southern Asia," Applied Energy, Elsevier, vol. 325(C).
    5. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    6. Elizabeth G. Hanna & Peter W. Tait, 2015. "Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming," IJERPH, MDPI, vol. 12(7), pages 1-41, July.
    7. Gil-Baez, Maite & Barrios-Padura, Ángela & Molina-Huelva, Marta & Chacartegui, R., 2017. "Natural ventilation systems in 21st-century for near zero energy school buildings," Energy, Elsevier, vol. 137(C), pages 1186-1200.
    8. Xiaojing Meng & Beibei Wei & Yingni Zhai, 2020. "Sensitivity Analysis of Envelope Design Parameters of Industrial Buildings with Natural Ventilation," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    9. Faustino Patiño-Cambeiro & Guillermo Bastos & Julia Armesto & Faustino Patiño-Barbeito, 2017. "Multidisciplinary Energy Assessment of Tertiary Buildings: Automated Geomatic Inspection, Building Information Modeling Reconstruction and Building Performance Simulation," Energies, MDPI, vol. 10(7), pages 1-17, July.
    10. Marko Korhonen & Suvi Kangasrääsiö & Rauli Svento, 2017. "Climate change and mortality: Evidence from 23 developed countries between 1960 and 2010," Proceedings of International Academic Conferences 5107635, International Institute of Social and Economic Sciences.
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    13. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    14. Julia Reisinger & Patrick Hollinsky & Iva Kovacic, 2021. "Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    15. Ziebarth, N. R. & Schmitt, M. & Karlsson, M., 2013. "The short-term population health effects of weather and pollution: implications of climate change," Health, Econometrics and Data Group (HEDG) Working Papers 13/34, HEDG, c/o Department of Economics, University of York.
    16. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    17. Katherine M. Pedersen & Tania M. Busch Isaksen & Marissa G. Baker & Noah Seixas & Nicole A. Errett, 2021. "Climate Change Impacts and Workforce Development Needs in Federal Region X: A Qualitative Study of Occupational Health and Safety Professionals’ Perceptions," IJERPH, MDPI, vol. 18(4), pages 1-13, February.
    18. CONTE KEIVABU, Risto, 2020. "Too hot to study? Gender and SES differences in the effect of temperature on school performance," SocArXiv whtf5, Center for Open Science.
    19. Mireille Chiroleu-Assouline & Mouez Fodha, 2011. "Environmental Tax and the Distribution of Income among Heterogeneous Workers," Annals of Economics and Statistics, GENES, issue 103-104, pages 71-92.
    20. Wen Yi & Albert P. C. Chan, 2017. "Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers," IJERPH, MDPI, vol. 14(9), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:1175-1185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.