Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.04.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cordiner, Stefano & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Impact of biodiesel fuel on engine emissions and Aftertreatment System operation," Applied Energy, Elsevier, vol. 164(C), pages 972-983.
- Anand, B. Prem & Saravanan, C.G. & Srinivasan, C. Ananda, 2010. "Performance and exhaust emission of turpentine oil powered direct injection diesel engine," Renewable Energy, Elsevier, vol. 35(6), pages 1179-1184.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ibrahim Yildiz & Hakan Caliskan & Kazutoshi Mori, 2020. "Exergy analysis and nanoparticle assessment of cooking oil biodiesel and standard diesel fueled internal combustion engine," Energy & Environment, , vol. 31(8), pages 1303-1317, December.
- Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
- Balli, Ozgur & Caliskan, Nesrin & Caliskan, Hakan, 2023. "Aviation, energy, exergy, sustainability, exergoenvironmental and thermoeconomic analyses of a turbojet engine fueled with jet fuel and biofuel used on a pilot trainer aircraft," Energy, Elsevier, vol. 263(PD).
- Hamedi, Mohammad Reza & Doustdar, Omid & Tsolakis, Athanasios & Hartland, Jonathan, 2021. "Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles," Energy, Elsevier, vol. 230(C).
- Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
- Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
- Guo, Qiang & Liu, Jie & Wu, Binyang & Liu, Yize, 2022. "On the optimization of the double-layer combustion chamber with and without EGR of a diesel engine," Energy, Elsevier, vol. 247(C).
- Karali, Halil Ibrahim & Caliskan, Hakan, 2024. "Energy, exergy, sustainability, thermoeconomic, exergoeconomic, environmental and environmental-economic effects of novel boron-containing open cell geopolymer filter of a diesel engine on exhaust emi," Energy, Elsevier, vol. 290(C).
- Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
- Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
- Zuo, Qingsong & Li, Qiming & Yang, Xiaomei & Chen, Wei & Zhu, Guohui & Shen, Zhuang & Xie, Yong & Tang, Yuanyou, 2023. "Investigation of electrically heating catalytic converter flow and temperature field performance improvement based on field synergy," Energy, Elsevier, vol. 274(C).
- Liu, Wenlong & Gao, Ying & You, Yuelin & Jiang, Changwen & Hua, Taoyi & Xia, Bocong, 2024. "Nonlinear model predictive control(NMPC) of diesel oxidation catalyst (DOC) outlet temperature for active regeneration of diesel particulate filter (DPF) in diesel engine," Energy, Elsevier, vol. 293(C).
- Wang, Bin & Yao, Anren & Yao, Chunde & Chen, Chao & Wang, Hui, 2020. "In-depth comparison between pure diesel and diesel methanol dual fuel combustion mode," Applied Energy, Elsevier, vol. 278(C).
- Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
- García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Martinez-Boggio, Santiago, 2022. "Energy assessment of an electrically heated catalyst in a hybrid RCCI truck," Energy, Elsevier, vol. 238(PA).
- Aghbashlo, Mortaza & Tabatabaei, Meisam & Khalife, Esmail & Roodbar Shojaei, Taha & Dadak, Ali, 2018. "Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide," Energy, Elsevier, vol. 149(C), pages 967-978.
- Jacob, Ashwin & Ashok, B. & Usman, Kaisan Muhammad & Kulla, D.M., 2022. "Influence of post-injection parameters on the performance of continuous regeneration trap to mitigate greenhouse gas and particulate emissions from CI engine," Energy, Elsevier, vol. 248(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
- Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
- Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
- Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
- Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
- Seong-Min Cho & Chang-Young Hong & Se-Yeong Park & Da-Song Lee & June-Ho Choi & Bonwook Koo & In-Gyu Choi, 2019. "Application of Sulfated Tin (IV) Oxide Solid Superacid Catalyst to Partial Coupling Reaction of α-Pinene to Produce Less Viscous High-Density Fuel," Energies, MDPI, vol. 12(10), pages 1-14, May.
- Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
- Robert Mădălin Chivu & Jorge Martins & Florin Popescu & Krisztina Uzuneanu & Ion V. Ion & Margarida Goncalves & Teodor-Cezar Codău & Elena Onofrei & Francisco P. Brito, 2023. "Turpentine as an Additive for Diesel Engines: Experimental Study on Pollutant Emissions and Engine Performance," Energies, MDPI, vol. 16(13), pages 1-18, July.
- Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
- Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Pine oil–biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine," Applied Energy, Elsevier, vol. 130(C), pages 466-473.
- Yanuandri Putrasari & Ocktaeck Lim, 2019. "A Review of Gasoline Compression Ignition: A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future Engine Efficiency and Emission Targets," Energies, MDPI, vol. 12(2), pages 1-27, January.
- Chen, Chia-Yang & Lee, Wen-Jhy & Wang, Lin-Chi & Chang, Yu-Cheng & Yang, Hsi-Hsien & Young, Li-Hao & Lu, Jau-Huai & Tsai, Ying I. & Cheng, Man-Ting & Mwangi, John Kennedy, 2017. "Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel," Applied Energy, Elsevier, vol. 191(C), pages 35-43.
- Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
- Dubey, Pankaj & Gupta, Rajesh, 2018. "Influences of dual bio-fuel (Jatropha biodiesel and turpentine oil) on single cylinder variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 115(C), pages 1294-1302.
- Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
- Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
- Awad, Sary & Loubar, Khaled & Tazerout, Mohand, 2014. "Experimental investigation on the combustion, performance and pollutant emissions of biodiesel from animal fat residues on a direct injection diesel engine," Energy, Elsevier, vol. 69(C), pages 826-836.
- Perumal, Varatharaju & Ilangkumaran, M., 2017. "Experimental analysis of engine performance, combustion and emission using pongamia biodiesel as fuel in CI engine," Energy, Elsevier, vol. 129(C), pages 228-236.
- Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
- Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
More about this item
Keywords
Biodiesel; Enviroeconomic; Environment; Exergy; Fuel; Sustainability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:128:y:2017:i:c:p:128-144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.