IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1565-1583.html
   My bibliography  Save this article

Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations

Author

Listed:
  • Cai, Yang
  • Wang, Wei-Wei
  • Liu, Cheng-Wei
  • Ding, Wen-Tao
  • Liu, Di
  • Zhao, Fu-Yun

Abstract

This paper proposed one novel Thermo-Electric Ventilation (TEV) system driven by the concentrated photovoltaic-thermoelectric generator (CPV-TEG), which could use the electric power converted directly from solar energy by CPV-TEG. The effects of incident solar irradiance, number of thermoelectric generators, and ambient air temperatures on the power output of CPV-TEG have been analytically investigated through energy balance and first law of thermodynamics. Furthermore, input current and number of thermoelectric coolers were sensitively varied to optimize the performance of TEV system respectively in heating and cooling modes. Finally, an integrated theoretical and numerical approach was proposed to match the power output of CPV-TEG with the power input of TEV. Modeling results indicate that the output power from CPV-TEG could satisfy the energy demand of TEV system when the input currents of thermoelectric coolers were no more than 2.5 A and 2.8 A respectively for cooling and heating modes. Minimum energy and exergy efficiencies of the system in winter heating mode were confirmed to be 1.67 and 0.24 respectively, which were far higher than that in summer cooling mode. This research may be helpful for enhancing performance and reducing exergy destruction of thermoelectric ventilation system, simultaneously.

Suggested Citation

  • Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1565-1583
    DOI: 10.1016/j.renene.2019.09.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    2. Tan, Yong Zen & Han, Le & Chew, Nick Guan Pin & Chow, Wai Hoong & Wang, Rong & Chew, Jia Wei, 2018. "Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling," Applied Energy, Elsevier, vol. 231(C), pages 1079-1088.
    3. Dimri, Neha & Tiwari, Arvind & Tiwari, G.N., 2019. "Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors," Renewable Energy, Elsevier, vol. 134(C), pages 343-356.
    4. Caliskan, Hakan & Mori, Kazutoshi, 2017. "Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems," Energy, Elsevier, vol. 128(C), pages 128-144.
    5. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    6. Cai, Yang & Zhang, Dong-Dong & Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2019. "Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: Full modeling and performance evaluation," Renewable Energy, Elsevier, vol. 130(C), pages 968-981.
    7. Dai, Y.J. & Wang, R.Z. & Ni, L., 2003. "Experimental investigation on a thermoelectric refrigerator driven by solar cells," Renewable Energy, Elsevier, vol. 28(6), pages 949-959.
    8. Irshad, Kashif & Habib, Khairul & Thirumalaiswamy, Nagarajan & Saha, Bidyut Baran, 2015. "Performance analysis of a thermoelectric air duct system for energy-efficient buildings," Energy, Elsevier, vol. 91(C), pages 1009-1017.
    9. Li, Dianhong & Xuan, Yimin & Li, Qiang & Hong, Hui, 2017. "Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems," Energy, Elsevier, vol. 126(C), pages 343-351.
    10. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    11. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    12. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    13. Hashim, H. & Bomphrey, J.J. & Min, G., 2016. "Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system," Renewable Energy, Elsevier, vol. 87(P1), pages 458-463.
    14. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    15. Cai, Yang & Wang, Lei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2019. "Thermal performance of an active thermoelectric ventilation system applied for built space cooling: Network model and finite time thermodynamic optimization," Energy, Elsevier, vol. 170(C), pages 915-930.
    16. Cheng, Tsung-Chieh & Cheng, Chin-Hsiang & Huang, Zhu-Zin & Liao, Guo-Chun, 2011. "Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications," Energy, Elsevier, vol. 36(1), pages 133-140.
    17. Yang, Tao & Pan, Yiqun & Yang, Yikun & Lin, Meishun & Qin, Bingyue & Xu, Peng & Huang, Zhizhong, 2017. "CO2 emissions in China's building sector through 2050: A scenario analysis based on a bottom-up model," Energy, Elsevier, vol. 128(C), pages 208-223.
    18. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    19. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    20. Abdul-Wahab, Sabah A. & Elkamel, Ali & Al-Damkhi, Ali M. & Al-Habsi, Is'haq A. & Al-Rubai'ey', Hilal S. & Al-Battashi, Abdulaziz K. & Al-Tamimi, Ali R. & Al-Mamari, Khamis H. & Chutani, Muhammad U., 2009. "Design and experimental investigation of portable solar thermoelectric refrigerator," Renewable Energy, Elsevier, vol. 34(1), pages 30-34.
    21. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei-Wei & Zhang, Hong-Liang & Song, Yong-Juan & Song, Jia-Wei & Shi, Dun-Ke & Zhao, Fu-Yun & Cai, Yang, 2022. "Fluid flow and thermal performance of the pulsating heat pipes facilitated with solar collectors: Experiments, theories and GABPNN machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1533-1547.
    2. Mohammadnia, Ali & Ziapour, Behrooz M. & Sedaghati, Farzad & Rosendahl, Lasse & Rezania, Alireza, 2021. "Fan operating condition effect on performance of self- cooling thermoelectric generator system," Energy, Elsevier, vol. 224(C).
    3. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    4. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "Performance assessment method for roof-integrated TSSCs," Applied Energy, Elsevier, vol. 322(C).
    5. Palomba, Valeria & Borri, Emiliano & Charalampidis, Antonios & Frazzica, Andrea & Cabeza, Luisa F. & Karellas, Sotirios, 2020. "Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization," Renewable Energy, Elsevier, vol. 166(C), pages 190-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohadeseh Seyednezhad & Hamidreza Najafi & Benjamin Kubwimana, 2021. "Numerical and Experimental Investigation of a Thermoelectric-Based Radiant Ceiling Panel with Phase Change Material for Building Cooling Applications," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    2. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    3. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    4. Mohadeseh Seyednezhad & Hamidreza Najafi, 2021. "Solar-Powered Thermoelectric-Based Cooling and Heating System for Building Applications: A Parametric Study," Energies, MDPI, vol. 14(17), pages 1-17, September.
    5. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    6. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    7. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    8. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    9. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    10. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    11. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    12. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
    14. Cai, Yang & Wang, Lei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2019. "Thermal performance of an active thermoelectric ventilation system applied for built space cooling: Network model and finite time thermodynamic optimization," Energy, Elsevier, vol. 170(C), pages 915-930.
    15. Shen, Limei & Pu, Xiwang & Sun, Yongjun & Chen, Jiongde, 2016. "A study on thermoelectric technology application in net zero energy buildings," Energy, Elsevier, vol. 113(C), pages 9-24.
    16. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    17. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    18. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    19. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    20. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1565-1583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.