IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018360.html
   My bibliography  Save this article

A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics

Author

Listed:
  • Huang, Xiao-Yan
  • Zhou, Ze-Yu
  • Shu, Zheng-Yu
  • Cai, Yang
  • Lv, You
  • Wang, Wei-Wei
  • Zhao, Fu-Yun

Abstract

Annular thermoelectric power generator has been increasingly considered in application of ambient energy harvesting owing to the advantages of simple structure and no pollution. To improve thermal stability and energy harvesting performance of this system, the latent heat of phase change materials to improve thermal management and the high thermal conductivity of the heat sink to enhance heat transfer with the ambient are harness to annular thermoelectric power generator. Motivated by this, a phase change material based annular thermoelectric energy harvester (PCM-ATEH) with fins is developed for ambient energy harvesting and its three-dimensional transient model is also built up through jointly with thermo-electric and phase change processes. This paper considers the influence of key parameters such as temperature fluctuation amplitude, temperature fluctuation period, height ratio of PCM and thermoelectric generator (TEG) and melting temperature on liquid fraction, temperature difference, voltage and power density. Moreover, the comparison of PCM-ATEH and PCM based thermoelectric energy harvester (PCM-TEH) with/without fins is further conducted in this study to explore thermal management and energy harvesting performance. The energy harvesting characteristics of PCM-ATEH with fins is developed concerning the combination of power generation of TEG and melting process of PCM. Based on the results, it is found that the temperature difference and power density of PCM-ATEH with fins vary periodically with the sinusoidal temperature boundary, and results show that increasing temperature fluctuation period is not always feasible. Additionally, the comparative results indicate that the peak power density and energy efficiency of PCM-ATEH with fins are increased by 0.126 W/m2 and 0.02 % compared with PCM-TEH with fins, and increased by 0.195 W/m2 and 0.041 % compared with PCM-ATEH without fins. The results of energy harvesting characteristics show that a maximum of 0.77$ per watt can be reached to power generation cost of PCM-ATEH with fins. This paper can provide theoretical guidance for thermal management and energy conversion of energy harvesting system.

Suggested Citation

  • Huang, Xiao-Yan & Zhou, Ze-Yu & Shu, Zheng-Yu & Cai, Yang & Lv, You & Wang, Wei-Wei & Zhao, Fu-Yun, 2024. "A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018360
    DOI: 10.1016/j.renene.2023.119921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borhani, S.M. & Hosseini, M.J. & Pakrouh, R. & Ranjbar, A.A. & Nourian, A., 2021. "Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite," Renewable Energy, Elsevier, vol. 168(C), pages 1122-1140.
    2. Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
    3. Wang, Yijiang & Peng, Yizhu & Guo, Kehui & Zheng, Xiaofeng & Darkwa, Jo & Zhong, Hua, 2021. "Experimental investigation on performance improvement of thermoelectric generator based on phase change materials and heat transfer enhancement," Energy, Elsevier, vol. 229(C).
    4. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    5. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
    6. Yin, Tao & Li, Zhen-Ming & Peng, Peng & Liu, Wei & Shao, Yu-Ying & He, Zhi-Zhu, 2021. "Performance analysis and design optimization of a compact thermoelectric generator with T-Shaped configuration," Energy, Elsevier, vol. 229(C).
    7. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    8. Saufi Sulaiman, M. & Singh, B. & Mohamed, W.A.N.W., 2019. "Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle," Energy, Elsevier, vol. 179(C), pages 628-646.
    9. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    10. Tian, Yuanyuan & Liu, Anbang & Wang, Junli & Zhou, Yajie & Bao, Chengpeng & Xie, Huaqing & Wu, Zihua & Wang, Yuanyuan, 2021. "Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources," Energy, Elsevier, vol. 233(C).
    11. Hashim, H. & Bomphrey, J.J. & Min, G., 2016. "Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system," Renewable Energy, Elsevier, vol. 87(P1), pages 458-463.
    12. Liao, Xinzhong & Liu, Yuxuan & Ren, Jiahang & Guan, Liuping & Sang, Xuehao & Wang, Bowen & Zhang, Hang & Wang, Qiuwang & Ma, Ting, 2020. "Investigation of a double-PCM-based thermoelectric energy-harvesting device using temperature fluctuations in an ambient environment," Energy, Elsevier, vol. 202(C).
    13. He, Wei & Guo, Rui & Liu, Shengchun & Zhu, Kai & Wang, Shixue, 2020. "Temperature gradient characteristics and effect on optimal thermoelectric performance in exhaust power-generation systems," Applied Energy, Elsevier, vol. 261(C).
    14. Karami Rad, Meysam & Rezania, Alireza & Omid, Mahmoud & Rajabipour, Ali & Rosendahl, Lasse, 2019. "Study on material properties effect for maximization of thermoelectric power generation," Renewable Energy, Elsevier, vol. 138(C), pages 236-242.
    15. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    16. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    17. Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
    18. Huang, Kuo & Yan, Yuying & Wang, Guohua & Li, Bo, 2021. "Improving transient performance of thermoelectric generator by integrating phase change material," Energy, Elsevier, vol. 219(C).
    19. Wang, Jun & Song, Xiangxiang & Ni, Qiqiang & Li, Xingjun & Meng, Qingtian, 2021. "Experimental investigation on the influence of phase change material on the output performance of thermoelectric generator," Renewable Energy, Elsevier, vol. 177(C), pages 884-894.
    20. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    21. Fan, Shifa & Gao, Yuanwen, 2018. "Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator," Energy, Elsevier, vol. 150(C), pages 38-48.
    22. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery," Applied Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ren, Fengsheng & Yang, Yue & Ma, Bijian & Zhu, Yonggang, 2023. "Performance optimization for a novel two-stage thermoelectric generator with different PCMs embedding modes," Energy, Elsevier, vol. 281(C).
    2. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    3. Luo, Ding & Wang, Ruochen & Yan, Yuying & Yu, Wei & Zhou, Weiqi, 2021. "Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery," Applied Energy, Elsevier, vol. 297(C).
    4. Yousefi, Esmaeil & Nejad, Ali Abbas & Rezania, Alireza, 2022. "Higher power output in thermoelectric generator integrated with phase change material and metal foams under transient boundary condition," Energy, Elsevier, vol. 256(C).
    5. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).
    6. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    7. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    8. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    9. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    10. Cai, Yang & Hong, Bing-Hua & Wu, Wei-Xiong & Wang, Wei-Wei & Zhao, Fu-Yun, 2022. "Active cooling performance of a PCM-based thermoelectric device: Dynamic characteristics and parametric investigations," Energy, Elsevier, vol. 254(PB).
    11. Cheng-You Chen & Kung-Wen Du & Yi-Cheng Chung & Chun-I Wu, 2024. "Advancements in Thermoelectric Generator Design: Exploring Heat Exchanger Efficiency and Material Properties," Energies, MDPI, vol. 17(2), pages 1-25, January.
    12. Pang, Dandan & Zhang, Aibing & Guo, Yage & Wu, Junfeng, 2023. "Energy harvesting analysis of wearable thermoelectric generators integrated with human skin," Energy, Elsevier, vol. 282(C).
    13. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    14. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Wang, Yulin & Ge, Minghui, 2023. "Numerical investigation of an exhaust thermoelectric generator with a perforated plate," Energy, Elsevier, vol. 263(PB).
    15. Chen, Wei-Hsin & Chiou, Yi-Bin & Chein, Rei-Yu & Uan, Jun-Yen & Wang, Xiao-Dong, 2022. "Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat," Applied Energy, Elsevier, vol. 306(PA).
    16. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    17. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    18. Shi, Zijie & Zhang, Kai & Jiang, Kaiyu & Li, Haoran & Ye, Peiliang & Yang, Haibin & Mahian, Omid, 2023. "Maximizing energy generation: A study of radiative cooling-based thermoelectric power devices," Energy, Elsevier, vol. 274(C).
    19. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    20. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.