IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018360.html
   My bibliography  Save this article

A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics

Author

Listed:
  • Huang, Xiao-Yan
  • Zhou, Ze-Yu
  • Shu, Zheng-Yu
  • Cai, Yang
  • Lv, You
  • Wang, Wei-Wei
  • Zhao, Fu-Yun

Abstract

Annular thermoelectric power generator has been increasingly considered in application of ambient energy harvesting owing to the advantages of simple structure and no pollution. To improve thermal stability and energy harvesting performance of this system, the latent heat of phase change materials to improve thermal management and the high thermal conductivity of the heat sink to enhance heat transfer with the ambient are harness to annular thermoelectric power generator. Motivated by this, a phase change material based annular thermoelectric energy harvester (PCM-ATEH) with fins is developed for ambient energy harvesting and its three-dimensional transient model is also built up through jointly with thermo-electric and phase change processes. This paper considers the influence of key parameters such as temperature fluctuation amplitude, temperature fluctuation period, height ratio of PCM and thermoelectric generator (TEG) and melting temperature on liquid fraction, temperature difference, voltage and power density. Moreover, the comparison of PCM-ATEH and PCM based thermoelectric energy harvester (PCM-TEH) with/without fins is further conducted in this study to explore thermal management and energy harvesting performance. The energy harvesting characteristics of PCM-ATEH with fins is developed concerning the combination of power generation of TEG and melting process of PCM. Based on the results, it is found that the temperature difference and power density of PCM-ATEH with fins vary periodically with the sinusoidal temperature boundary, and results show that increasing temperature fluctuation period is not always feasible. Additionally, the comparative results indicate that the peak power density and energy efficiency of PCM-ATEH with fins are increased by 0.126 W/m2 and 0.02 % compared with PCM-TEH with fins, and increased by 0.195 W/m2 and 0.041 % compared with PCM-ATEH without fins. The results of energy harvesting characteristics show that a maximum of 0.77$ per watt can be reached to power generation cost of PCM-ATEH with fins. This paper can provide theoretical guidance for thermal management and energy conversion of energy harvesting system.

Suggested Citation

  • Huang, Xiao-Yan & Zhou, Ze-Yu & Shu, Zheng-Yu & Cai, Yang & Lv, You & Wang, Wei-Wei & Zhao, Fu-Yun, 2024. "A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018360
    DOI: 10.1016/j.renene.2023.119921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.