IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222005722.html
   My bibliography  Save this article

Influence of post-injection parameters on the performance of continuous regeneration trap to mitigate greenhouse gas and particulate emissions from CI engine

Author

Listed:
  • Jacob, Ashwin
  • Ashok, B.
  • Usman, Kaisan Muhammad
  • Kulla, D.M.

Abstract

The present study explores the influence of post-injection parameters, namely, post-injection angle and post-injection mass, on a continuous active regeneration trap to mitigate vehicular emissions using diesel enriched by active amyl alcohol from Scenedesmus quadricauda microalgae. From the study, while operating on active amyl alcohol-diesel blend, the maximum de-smoke efficiency for low, medium and high load conditions observed were 67.25%, 55.78% and 46.94% respectively at a post-injection timing of 20°CA aTDC and at a post-injection mass of 2 mg. Furthermore, the maximum de-hydrocarbon efficiency was obtained at a post-injection timing and mass of 10°CA aTDC and 1 mg with a reduction of about 65.45%, 75% and 73.8% for low, medium and high load conditions. However, a 1.36% increase in fuel consumption is observed at late post-injections as compared to diesel fuel. At all cases, simultaneous reduction of particulate smoke emissions and oxides of nitrogen of up to 65.45% and 29% were observed with the complete elimination of carbon monoxide emissions by catalytic oxidation treatment within the after-treatment unit. The novelty of this study is to establish third generation bio-energy as a suitable diesel fuel surrogate for a post-injection activated after-treatment unit.

Suggested Citation

  • Jacob, Ashwin & Ashok, B. & Usman, Kaisan Muhammad & Kulla, D.M., 2022. "Influence of post-injection parameters on the performance of continuous regeneration trap to mitigate greenhouse gas and particulate emissions from CI engine," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005722
    DOI: 10.1016/j.energy.2022.123669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radheshyam, & Santhosh, K. & Kumar, G.N., 2020. "Effect of 1-pentanol addition and EGR on the combustion, performance and emission characteristic of a CRDI diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 925-936.
    2. Li, Ji & Wu, Dawei & Mohammadsami Attar, Hassan & Xu, Hongming, 2022. "Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil," Applied Energy, Elsevier, vol. 306(PA).
    3. Caliskan, Hakan & Mori, Kazutoshi, 2017. "Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems," Energy, Elsevier, vol. 128(C), pages 128-144.
    4. Oni, Babalola Aisosa & Oluwatosin, David, 2020. "Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 725-734.
    5. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2020. "Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline," Renewable Energy, Elsevier, vol. 145(C), pages 699-710.
    6. Lao, Chung Ting & Akroyd, Jethro & Eaves, Nickolas & Smith, Alastair & Morgan, Neal & Nurkowski, Daniel & Bhave, Amit & Kraft, Markus, 2020. "Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines," Applied Energy, Elsevier, vol. 267(C).
    7. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    8. Ashok, B. & Nanthagopal, K. & Darla, Sivaprasad & Chyuan, Ong Hwai & Ramesh, A. & Jacob, Ashwin & Sahil, G. & Thiyagarajan, S. & Geo, V. Edwin, 2019. "Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel," Energy, Elsevier, vol. 173(C), pages 494-510.
    9. Jeftić, Marko & Zheng, Ming, 2015. "A study of the effect of post injection on combustion and emissions with premixing enhanced fueling strategies," Applied Energy, Elsevier, vol. 157(C), pages 861-870.
    10. Bemani, Amin & Xiong, Qingang & Baghban, Alireza & Habibzadeh, Sajjad & Mohammadi, Amir H. & Doranehgard, Mohammad Hossein, 2020. "Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO- LSSVM models," Renewable Energy, Elsevier, vol. 150(C), pages 924-934.
    11. Shameer, P. Mohamed & Ramesh, K., 2017. "Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends," Energy, Elsevier, vol. 118(C), pages 1334-1344.
    12. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vargün, Mustafa & Özsezen, Ahmet Necati, 2023. "Evaluation of the effect of the fuel injection phase on the combustion and exhaust characteristics in a diesel engine operating with alcohol-diesel mixtures," Energy, Elsevier, vol. 270(C).
    2. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Zannis, Theodoros C. & Kyritsis, Dimitrios C., 2023. "Studying the cyclic variability (CCV) of performance and NO and CO emissions in a methane-run high-speed SI engine via quasi-dimensional turbulent combustion modeling and two CCV influencing mechanism," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Viswanathan, Vinoth Kannan & Kaladgi, Abdul Razak & Thomai, Pushparaj & Ağbulut, Ümit & Alwetaishi, Mamdooh & Said, Zafar & Shaik, Saboor & Afzal, Asif, 2022. "Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends," Renewable Energy, Elsevier, vol. 198(C), pages 549-567.
    3. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    4. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & Nazia Hossain & Asif Afzal & C Ahamed Saleel, 2021. "Comparative Analysis of Performance, Emission, and Combustion Characteristics of a Common Rail Direct Injection Diesel Engine Powered with Three Different Biodiesel Blends," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Santhosh, K. & Kumar, G.N., 2021. "Effect of injection time on combustion, performance and emission characteristics of direct injection CI engine fuelled with equi-volume of 1-hexanol/diesel blends," Energy, Elsevier, vol. 214(C).
    6. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    8. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    9. Artur Wolak & Jarosław Molenda & Kamil Fijorek & Bartosz Łankiewicz, 2022. "Prediction of the Total Base Number (TBN) of Engine Oil by Means of FTIR Spectroscopy," Energies, MDPI, vol. 15(8), pages 1-21, April.
    10. Qaseem, Mirza Faisal & Shaheen, Humaira & Wu, Ai-Min, 2021. "Cell wall hemicellulose for sustainable industrial utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Li, Hao & Song, Chonglin & Lv, Gang & Pang, Huating & Qiao, Yuehan, 2017. "Assessment of the impact of post-injection on exhaust pollutants emitted from a diesel engine fueled with biodiesel," Renewable Energy, Elsevier, vol. 114(PB), pages 924-933.
    12. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    13. Araghi, Mansour Khalili & Barkhordari, Sajjad & Hassannia, Razeih, 2023. "Economic impacts of producing bioethanol in Iran: A CGE approach," Energy, Elsevier, vol. 263(PC).
    14. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    15. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    16. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    17. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    18. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    19. Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    20. Hamedi, Mohammad Reza & Doustdar, Omid & Tsolakis, Athanasios & Hartland, Jonathan, 2021. "Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.