IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp925-936.html
   My bibliography  Save this article

Effect of 1-pentanol addition and EGR on the combustion, performance and emission characteristic of a CRDI diesel engine

Author

Listed:
  • Radheshyam,
  • Santhosh, K.
  • Kumar, G.N.

Abstract

Experimental study of 1-pentanol addition and EGR rates on the combustion, performance and emission of a CRDI diesel engine is carried out in this work. 1-Pentanol being a higher alcohol has fuel properties comparable to diesel. Experiments were conducted on a 4 stroke two cylinder, CRDI diesel engine running at a constant speed of 2000 rpm for lower load and higher load. Test fuels were prepared by blending the 1-pentanol with diesel, and tests were carried out for 5%, 10%, 20%, 30% and 40%, 1-pentanol blended in diesel on a volume basis. Effect of EGR rates of 10% and 20% were also studied. It had observed that engine can be run up to 30% of 1-pentanol blended fuel without any engine modification, but with raise in the percentage of 1-pentanol in the blends, BSFC increases and BTE decreases. Combustion characteristic for blended fuel depends upon the load. At higher load due to premixed combustion MGT, CP and NHR were almost same compared to the diesel. Reduction in NOx emissions was noted for all the fuel blends at the cost of HC and CO emission. 1-pentanol is a renewable biofuel, with use of 1-pentanol the dependency on petrodiesel can be overcome.

Suggested Citation

  • Radheshyam, & Santhosh, K. & Kumar, G.N., 2020. "Effect of 1-pentanol addition and EGR on the combustion, performance and emission characteristic of a CRDI diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 925-936.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:925-936
    DOI: 10.1016/j.renene.2019.06.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konjević, Lucija & Racar, Marko & Ilinčić, Petar & Faraguna, Fabio, 2023. "A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol," Energy, Elsevier, vol. 262(PA).
    2. Hou, Junbo & Yang, Min & Zhang, Junliang, 2020. "Active and passive fuel recirculation for solid oxide and proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 155(C), pages 1355-1371.
    3. Santhosh, K. & Kumar, G.N., 2021. "Effect of injection time on combustion, performance and emission characteristics of direct injection CI engine fuelled with equi-volume of 1-hexanol/diesel blends," Energy, Elsevier, vol. 214(C).
    4. Masera, Kemal & Hossain, Abul K. & Davies, Philip A. & Doudin, Khalid, 2021. "Investigation of 2-butoxyethanol as biodiesel additive on fuel property and combustion characteristics of two neat biodiesels," Renewable Energy, Elsevier, vol. 164(C), pages 285-297.
    5. Chaitanya, A.V. Krishna & Mohanty, Dillip Kumar, 2022. "Experimental investigation on the combustion, performance and emission characteristics of 1-pentanol blended waste plastic oil in a CRDI engine with EGR," Energy, Elsevier, vol. 256(C).
    6. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    7. Abul K. Hossain, 2020. "Combustion Characteristics of Waste Cooking Oil–Butanol/Diesel/Gasoline Blends for Cleaner Emission," Clean Technol., MDPI, vol. 2(4), pages 1-15, November.
    8. Yang, Ziming & Fei, Chunguang & Li, Yikai & Wang, Dongfang & Sun, Chenhan, 2023. "Experimental study of the effect of physical and chemical properties of alcohols on the spray combustion characteristics of alcohol-diesel blended fuels," Energy, Elsevier, vol. 263(PE).
    9. Jacob, Ashwin & Ashok, B. & Usman, Kaisan Muhammad & Kulla, D.M., 2022. "Influence of post-injection parameters on the performance of continuous regeneration trap to mitigate greenhouse gas and particulate emissions from CI engine," Energy, Elsevier, vol. 248(C).

    More about this item

    Keywords

    1-Pentanol; NOx; EGR; CRDI;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:925-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.