IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222014773.html
   My bibliography  Save this article

Experimental investigation on the combustion, performance and emission characteristics of 1-pentanol blended waste plastic oil in a CRDI engine with EGR

Author

Listed:
  • Chaitanya, A.V. Krishna
  • Mohanty, Dillip Kumar

Abstract

Faster exhaustion of fossil fuels and escalation of pollution levels have increased the requirement for alternate fuels to fulfil the energy demand of the fast growing world. The present work attempts to use waste plastic oil added with 1-Pentanol in a CRDI engine to achieve comparable performances of pure diesel with significantly reduced hazardous emissions. The experiments were carried out with 10, 20 and 30% of 1-pentanol blended with waste plastic oil on volume basis. The experiments were conducted at constant speed of 2000 rpm with load varying from 20 to 80% and exhaust gas recirculation by 10 and 20%. The fuel blend with 30% 1-pentanol exhibited 3.3% lower efficiency, 0.02 kg/kWh higher brake specific fuel consumption, 74 ppm of lower nitrogen oxide and 2.3 ppm of higher hydrocarbon emissions correlated to pure diesel. The use of exhaust gas recirculation reduced nitrogen oxides in the exhaust gas with slightly aggravated emissions of carbon monoxide. Considering the different combustion, performance and emission parameters, the fuel blend containing 30% of 1-pentanol and 70% waste plastic oil can be a potential alternate to pure diesel.

Suggested Citation

  • Chaitanya, A.V. Krishna & Mohanty, Dillip Kumar, 2022. "Experimental investigation on the combustion, performance and emission characteristics of 1-pentanol blended waste plastic oil in a CRDI engine with EGR," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014773
    DOI: 10.1016/j.energy.2022.124574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radheshyam, & Santhosh, K. & Kumar, G.N., 2020. "Effect of 1-pentanol addition and EGR on the combustion, performance and emission characteristic of a CRDI diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 925-936.
    2. Das, Mithun & Sarkar, Mouktik & Datta, Amitava & Santra, Apurba Kumar, 2018. "An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends," Renewable Energy, Elsevier, vol. 119(C), pages 174-184.
    3. Purushothaman, K. & Nagarajan, G., 2009. "Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil," Renewable Energy, Elsevier, vol. 34(1), pages 242-245.
    4. Wong, S.L. & Ngadi, N. & Abdullah, T.A.T. & Inuwa, I.M., 2015. "Current state and future prospects of plastic waste as source of fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1167-1180.
    5. Devaraj, J. & Robinson, Y. & Ganapathi, P., 2015. "Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine," Energy, Elsevier, vol. 85(C), pages 304-309.
    6. Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    2. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Gad, M.S. & Panchal, Hitesh & Ağbulut, Ümit, 2022. "Waste to Energy: An experimental comparison of burning the waste-derived bio-oils produced by transesterification and pyrolysis methods," Energy, Elsevier, vol. 242(C).
    5. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    6. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    7. Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
    8. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    9. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    10. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    11. Miranda, Miguel & Cabrita, I. & Pinto, Filomena & Gulyurtlu, I., 2013. "Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study," Energy, Elsevier, vol. 58(C), pages 270-282.
    12. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    13. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    14. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    15. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    16. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    17. Nabi, M.N. & Rasul, M.G. & Rahman, S.M.A. & Dowell, Ashley & Ristovski, Z.D. & Brown, R.J., 2019. "Study of performance, combustion and emission characteristics of a common rail diesel engine with tea tree oil-diglyme blends," Energy, Elsevier, vol. 180(C), pages 216-228.
    18. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    19. S. M. Ashrafur Rahman & Md. Nurun Nabi & Thuy Chu Van & Kabir Suara & Mohammad Jafari & Ashley Dowell & Md. Aminul Islam & Anthony J. Marchese & Jessica Tryner & Md. Farhad Hossain & Thomas J. Rainey , 2018. "Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends," Energies, MDPI, vol. 11(4), pages 1-15, March.
    20. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Dimitrios Tziourtzioumis, 2023. "Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends," Energies, MDPI, vol. 16(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.