IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5597-d630537.html
   My bibliography  Save this article

Comparative Analysis of Performance, Emission, and Combustion Characteristics of a Common Rail Direct Injection Diesel Engine Powered with Three Different Biodiesel Blends

Author

Listed:
  • K. M. V. Ravi Teja

    (Department of Mechanical Engineering, K. L. Deemed to be University, Green Fields, Vaddeswaram 522502, India)

  • P. Issac Prasad

    (Department of Mechanical Engineering, K. L. Deemed to be University, Green Fields, Vaddeswaram 522502, India)

  • K. Vijaya Kumar Reddy

    (Department of Mechanical Engineering, JNTU, Kukatpally, Hyderabad 500085, India)

  • N. R. Banapurmath

    (Department of Mechanical Engineering, B.V.B College of Engineering and Technology, KLE Technological University, Vidyanagar, Hubli 580031, India)

  • Manzoore Elahi M. Soudagar

    (Department of Mechanical Engineering, School of Technology, Glocal University, Delhi-Yamunotri Marg, SH-57, Mirzapur Pole, Saharanpur 247121, India)

  • Nazia Hossain

    (School of Engineering, RMIT University, Melbourne, VIC 3000, Australia)

  • Asif Afzal

    (Department of Mechanical Engineering, P. A. College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Mangaluru 574153, India)

  • C Ahamed Saleel

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha 61421, Saudi Arabia)

Abstract

Biodiesel is a renewable energy source which is gaining prominence as an alternative fuel over fossil diesel for different applications. Due to their higher viscosity and lower volatility, biodiesels are blended with diesel in various proportions. B20 blends are viable and sustainable solutions in diesel engines with acceptable engine performance as they can replace 20% fossil fuel usage. Biodiesel blends are slightly viscous as compared with diesel and can be used in common rail direct injection (CRDI) engines which provide high pressure injection using an electronic control unit (ECU) with fuel flexibility. In view of this, B20 blends of three biodiesels derived from cashew nutshell (CHNOB (B20)), jackfruit seed (JACKSOB (B20)), and Jamun seed (JAMNSOB (B20)) oils are used in a modified single-cylinder high-pressure-assisted CRDI diesel engine. At a BP of 5.2 kW, for JAMNSOB (B20) operation, BTE, NOx, and PP increased 4.04%, 0.56%, and 5.4%, respectively, and smoke, HC, CO, ID, and CD decreased 5.12%, 6.25%, 2.75%, 5.15%, and 6.25%, respectively, as compared with jackfruit B20 operation.

Suggested Citation

  • K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & Nazia Hossain & Asif Afzal & C Ahamed Saleel, 2021. "Comparative Analysis of Performance, Emission, and Combustion Characteristics of a Common Rail Direct Injection Diesel Engine Powered with Three Different Biodiesel Blends," Energies, MDPI, vol. 14(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5597-:d:630537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Romeo Kamta Legue & Zacharie Merlin Ayissi & Mahamat Hassane Babikir & Marcel Obounou & Henri Paul Ekobena Fouda, 2021. "Experimental and Simulation of Diesel Engine Fueled with Biodiesel with Variations in Heat Loss Model," Energies, MDPI, vol. 14(6), pages 1-17, March.
    2. Javier Monsalve-Serrano & Giacomo Belgiorno & Gabriele Di Blasio & María Guzmán-Mendoza, 2020. "1D Simulation and Experimental Analysis on the Effects of the Injection Parameters in Methane–Diesel Dual-Fuel Combustion," Energies, MDPI, vol. 13(14), pages 1-13, July.
    3. Asif Afzal & Manzoore Elahi M. Soudagar & Ali Belhocine & Mohammed Kareemullah & Nazia Hossain & Saad Alshahrani & Ahamed Saleel C. & Ram Subbiah & Fazil Qureshi & M. A. Mujtaba, 2021. "Thermal Performance of Compression Ignition Engine Using High Content Biodiesels: A Comparative Study with Diesel Fuel," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    4. Mujtaba, M.A. & Kalam, M.A. & Masjuki, H.H. & Razzaq, Luqman & Khan, Haris Mehmood & Soudagar, Manzoore Elahi M. & Gul, M. & Ahmed, Waqar & Raju, V. Dhana & Kumar, Ravinder & Ong, Hwai Chyuan, 2021. "Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends," Renewable Energy, Elsevier, vol. 179(C), pages 1447-1457.
    5. Harari, P.A. & Banapurmath, N.R. & Yaliwal, V.S. & Khan, T.M. Yunus & Soudagar, Manzoore Elahi M. & Sajjan, A.M., 2020. "Experimental studies on performance and emission characteristics of reactivity controlled compression ignition (RCCI) engine operated with gasoline and Thevetia Peruviana biodiesel," Renewable Energy, Elsevier, vol. 160(C), pages 865-875.
    6. Can, Özer & Öztürk, Erkan & Yücesu, H. Serdar, 2017. "Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine," Renewable Energy, Elsevier, vol. 109(C), pages 73-82.
    7. Mohammed Aneeque & Saad Alshahrani & Mohammed Kareemullah & Asif Afzal & C. Ahamed Saleel & Manzoore Elahi M. Soudagar & Nazia Hossain & Ram Subbiah & Mohamed H. Ahmed, 2021. "The Combined Effect of Alcohols and Calophyllum inophyllum Biodiesel Using Response Surface Methodology Optimization," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    8. Vijay Kumar, M. & Veeresh Babu, A. & Ravi Kumar, P., 2018. "Experimental investigation on the effects of diesel and mahua biodiesel blended fuel in direct injection diesel engine modified by nozzle orifice diameters," Renewable Energy, Elsevier, vol. 119(C), pages 388-399.
    9. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    10. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    11. Shameer, P. Mohamed & Ramesh, K., 2017. "Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends," Energy, Elsevier, vol. 118(C), pages 1334-1344.
    12. Calder, Jorge & Roy, Murari Mohon & Wang, Wilson, 2018. "Performance and emissions of a diesel engine fueled by biodiesel-diesel blends with recycled expanded polystyrene and fuel stabilizing additive," Energy, Elsevier, vol. 149(C), pages 204-212.
    13. Venu, Harish & Raju, V. Dhana & Lingesan, S. & Elahi M Soudagar, Manzoore, 2021. "Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 215(PB).
    14. Mujtaba, M.A. & Masjuki, H.H. & Kalam, M.A. & Ong, Hwai Chyuan & Gul, M. & Farooq, M. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Harith, M.H. & Yusoff, M.N.A.M., 2020. "Ultrasound-assisted process optimization and tribological characteristics of biodiesel from palm-sesame oil via response surface methodology and extreme learning machine - Cuckoo search," Renewable Energy, Elsevier, vol. 158(C), pages 202-214.
    15. Nabi, M.N. & Rasul, M.G. & Anwar, M. & Mullins, B.J., 2019. "Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels," Renewable Energy, Elsevier, vol. 140(C), pages 647-657.
    16. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    17. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    18. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    19. Keerthi Kumar N. & N. R. Banapurmath & T. K. Chandrashekar & Jatadhara G. S. & Manzoore Elahi M. Soudagar & Ali E. Anqi & M. A. Mujtaba & Marjan Goodarzi & Ashraf Elfasakhany & Md Irfanul Haque Siddiq, 2021. "Effect of Parameters Behavior of Simarouba Methyl Ester Operated Diesel Engine," Energies, MDPI, vol. 14(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N, Santhosh & Afzal, Asif & V, Srikanth H. & Ağbulut, Ümit & Alahmadi, Ahmad Aziz & Gowda, Ashwin C. & Alwetaishi, Mamdooh & Shaik, Saboor & Hoang, Anh Tuan, 2023. "Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    2. Keerthi Kumar N. & N. R. Banapurmath & T. K. Chandrashekar & Jatadhara G. S. & Manzoore Elahi M. Soudagar & Ali E. Anqi & M. A. Mujtaba & Marjan Goodarzi & Ashraf Elfasakhany & Md Irfanul Haque Siddiq, 2021. "Effect of Parameters Behavior of Simarouba Methyl Ester Operated Diesel Engine," Energies, MDPI, vol. 14(16), pages 1-18, August.
    3. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    4. Viswanathan, Vinoth Kannan & Kaladgi, Abdul Razak & Thomai, Pushparaj & Ağbulut, Ümit & Alwetaishi, Mamdooh & Said, Zafar & Shaik, Saboor & Afzal, Asif, 2022. "Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends," Renewable Energy, Elsevier, vol. 198(C), pages 549-567.
    5. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    6. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    7. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    8. Tamilvanan, A. & Mohanraj, T. & Ashok, B. & Santhoshkumar, A., 2023. "Enhancement of energy conversion and emission reduction of Calophyllum inophyllum biodiesel in diesel engine using reactivity controlled compression ignition strategy and TOPSIS optimization," Energy, Elsevier, vol. 264(C).
    9. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    10. Janakiraman, S. & Lakshmanan, T. & Raghu, P., 2021. "Experimental investigative analysis of ternary (diesel + biodiesel + bio-ethanol) fuel blended with metal-doped titanium oxide nanoadditives tested on a diesel engine," Energy, Elsevier, vol. 235(C).
    11. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    12. Ağbulut, Ümit & Yeşilyurt, Murat Kadir & Sarıdemir, Suat, 2021. "Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol – A detailed assessment on the combustion, emission, and perform," Energy, Elsevier, vol. 222(C).
    13. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    14. Paweł Fabiś & Bartosz Flekiewicz, 2021. "Influence of LPG and DME Composition on Spark Ignition Engine Performance," Energies, MDPI, vol. 14(17), pages 1-18, September.
    15. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    16. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    17. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    18. Ağbulut, Ümit & Sarıdemir, Suat & Rajak, Upendra & Polat, Fikret & Afzal, Asif & Verma, Tikendra Nath, 2021. "Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics," Energy, Elsevier, vol. 229(C).
    19. Biswas, Srijit & Kakati, Dipankar & Chakraborti, Prasun & Banerjee, Rahul, 2022. "Performance-emission-stability mapping of CI engine in RCCI-PCCI modes under varying ethanol and CNG induced reactivity profiles: A comparative study through experimental and optimization perspectives," Energy, Elsevier, vol. 254(PB).
    20. Jacob, Ashwin & Ashok, B. & Usman, Kaisan Muhammad & Kulla, D.M., 2022. "Influence of post-injection parameters on the performance of continuous regeneration trap to mitigate greenhouse gas and particulate emissions from CI engine," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5597-:d:630537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.