IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1622-d517041.html
   My bibliography  Save this article

Experimental and Simulation of Diesel Engine Fueled with Biodiesel with Variations in Heat Loss Model

Author

Listed:
  • Daniel Romeo Kamta Legue

    (Department of Physics, Energy—Electrical and Electronic Systems, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon
    Laboratory E3M, University of Douala, Douala P.O. Box 2701, Cameroon)

  • Zacharie Merlin Ayissi

    (Laboratory E3M, University of Douala, Douala P.O. Box 2701, Cameroon
    Nationale Higher Polytechnique School, University of Douala, Douala P.O. Box 2701, Cameroon
    Department of Automotive Engineering and Mécatronics, ENSPD, University of Douala, Douala P.O. Box 2701, Cameroon)

  • Mahamat Hassane Babikir

    (Department of Physics, Energy—Electrical and Electronic Systems, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon)

  • Marcel Obounou

    (Department of Physics, Energy—Electrical and Electronic Systems, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon
    Laboratory E3M, University of Douala, Douala P.O. Box 2701, Cameroon)

  • Henri Paul Ekobena Fouda

    (Department of Physics, Energy—Electrical and Electronic Systems, University of Yaounde 1, Yaoundé P.O. Box 812, Cameroon)

Abstract

This study presents an experimental investigation and thermodynamic 0D modeling of the combustion of a compression-ignition engine, fueled by an alternative fuel based on neem biodiesel (B100) as well as conventional diesel (D100). The study highlights the effects of the engine load at 50%, 75% and 100% and the influence of the heat loss models proposed by Woschni, Eichelberg and Hohenberg on the variation in the cylinder pressure. The study shows that the heat loss through the cylinder wall is more pronounced during diffusion combustion regardless of the nature of the fuels tested and the load range required. The cylinder pressures when using B100 estimated at 89 bars are relatively higher than when using D100, about 3.3% greater under the same experimental conditions. It is also observed that the problem of the high pressure associated with the use of biodiesels in engines can be solved by optimizing the ignition delay. The net heat release rate remains roughly the same when using D100 and B100 at 100% load. At low loads, the D100 heat release rate is higher than B100. The investigation shows how wall heat losses are more pronounced in the diffusion combustion phase, relative to the premix phase, by presenting variations in the curves.

Suggested Citation

  • Daniel Romeo Kamta Legue & Zacharie Merlin Ayissi & Mahamat Hassane Babikir & Marcel Obounou & Henri Paul Ekobena Fouda, 2021. "Experimental and Simulation of Diesel Engine Fueled with Biodiesel with Variations in Heat Loss Model," Energies, MDPI, vol. 14(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1622-:d:517041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
    2. Gehmlich, R.K. & Mueller, C.J. & Ruth, D.J. & Nilsen, C.W. & Skeen, S.A. & Manin, J., 2018. "Using ducted fuel injection to attenuate or prevent soot formation in mixing-controlled combustion strategies for engine applications," Applied Energy, Elsevier, vol. 226(C), pages 1169-1186.
    3. Evangelos G. Giakoumis, 2017. "Diesel and Spark Ignition Engines Emissions and After-Treatment Control: Research and Advancements," Energies, MDPI, vol. 10(11), pages 1-4, November.
    4. Mohamed Mohamed & Chee-Keong Tan & Ali Fouda & Mohammed Saber Gad & Osayed Abu-Elyazeed & Abdel-Fatah Hashem, 2020. "Diesel Engine Performance, Emissions and Combustion Characteristics of Biodiesel and Its Blends Derived from Catalytic Pyrolysis of Waste Cooking Oil," Energies, MDPI, vol. 13(21), pages 1-13, October.
    5. Muhammad Qasim & Tariq Mahmood Ansari & Mazhar Hussain, 2017. "Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils," Energies, MDPI, vol. 10(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    2. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & Nazia Hossain & Asif Afzal & C Ahamed Saleel, 2021. "Comparative Analysis of Performance, Emission, and Combustion Characteristics of a Common Rail Direct Injection Diesel Engine Powered with Three Different Biodiesel Blends," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemima Romola, C.V. & Karl J Samuel, P.K. & Megana Harshini, M. & Ganesh Moorthy, I. & Shyam Kumar, R. & Chinnathambi, Arunachalam & Salmen, Saleh H. & Alharbi, Sulaiman Ali & Karthikumar, Sankar, 2021. "Improvement of fuel properties of used palm oil derived biodiesel with butyl ferulate as an additive," Renewable Energy, Elsevier, vol. 175(C), pages 1052-1068.
    2. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    3. Wang, Buyu & Pamminger, Michael & Wallner, Thomas, 2019. "Impact of fuel and engine operating conditions on efficiency of a heavy duty truck engine running compression ignition mode using energy and exergy analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    5. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
    8. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    9. Zhang, Min & Ong, Jiun Cai & Pang, Kar Mun & Bai, Xue-Song & Walther, Jens H., 2022. "Large eddy simulation of soot formation and oxidation for different ambient temperatures and oxygen levels," Applied Energy, Elsevier, vol. 306(PB).
    10. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    11. Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
    12. Meshack Hawi & Ahmed Elwardany & Mohamed Ismail & Mahmoud Ahmed, 2019. "Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles," Energies, MDPI, vol. 12(5), pages 1-18, February.
    13. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    14. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    15. Vinay Atgur & G. Manavendra & Nagaraj R. Banapurmath & Boggarapu Nageswar Rao & Ali A. Rajhi & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & Ashok M. Sajjan & R. Venkatesh, 2022. "Essence of Thermal Analysis to Assess Biodiesel Combustion Performance," Energies, MDPI, vol. 15(18), pages 1-23, September.
    16. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    17. Ali Raza & Hassan Mehboob & Sajjad Miran & Waseem Arif & Syed Farukh Javaid Rizvi, 2020. "Investigation on the Characteristics of Biodiesel Droplets in the Engine Cylinder," Energies, MDPI, vol. 13(14), pages 1-14, July.
    18. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    19. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    20. Lu, Xingcai & Zhou, Xiaoxin & Ji, Libin & Yang, Zheng & Han, Dong & Huang, Chen & Huang, Zhen, 2013. "Experimental studies on the dual-fuel sequential combustion and emission simulation," Energy, Elsevier, vol. 51(C), pages 358-373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1622-:d:517041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.