IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp414-429.html
   My bibliography  Save this article

Design of optimization model for a hydrogen supply chain under emission constraints - A case study of Germany

Author

Listed:
  • Almansoori, A.
  • Betancourt-Torcat, A.

Abstract

The increasing global demand for petroleum-based fuels, mainly driven by the economic growth in emerging markets imposes significant challenges in terms of energy supply and environmental mitigation strategies. This work introduces an approach for the design and decision making of primary energy source, production, storage, and distribution networks for hydrogen supply in regions (or countries) under emission constraints. The problem was mathematically represented using a source-sink system approach to determine the most suitable hydrogen supply chain (HSC) network. The optimization problem was formulated as a Mixed Integer Linear Programming (MILP) model using GAMS® modeling system. The optimization objective consists of the minimization of the total network cost, both in terms of capital and operating expenditures, subject to: supply, demand, mass conservation, technical performance, economic, and environmental constraints. The model was used to plan the future hydrogen supply chain network for Germany in the year 2030 under emission constraints. The optimization results show that the model is a valuable tool for planning the optimal hydrogen supply chain network of a particular region or country.

Suggested Citation

  • Almansoori, A. & Betancourt-Torcat, A., 2016. "Design of optimization model for a hydrogen supply chain under emission constraints - A case study of Germany," Energy, Elsevier, vol. 111(C), pages 414-429.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:414-429
    DOI: 10.1016/j.energy.2016.05.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Boeters, Stefan & Koornneef, Joris, 2011. "Supply of renewable energy sources and the cost of EU climate policy," Energy Economics, Elsevier, vol. 33(5), pages 1024-1034, September.
    2. Peter Heindl & Peter J. Wood & Frank Jotzo, 2014. "Combining International Cap-and-Trade with National Carbon Taxes," CCEP Working Papers 1418, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    3. Stauffer, Hoff, 2006. "Beware Capital Charge Rates," The Electricity Journal, Elsevier, vol. 19(3), pages 81-86, April.
    4. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, Enero-Abr.
    5. Böhringer, Christoph & Rutherford, Thomas F. & Tol, Richard S. J., 2009. "The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment," Papers WP325, Economic and Social Research Institute (ESRI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermeling, Claudia & Löschel, Andreas & Mennel, Tim, 2013. "A new robustness analysis for climate policy evaluations: A CGE application for the EU 2020 targets," Energy Policy, Elsevier, vol. 55(C), pages 27-35.
    2. Burmeister, Johannes & Peterson, Sonja, 2016. "National climate policies in times of the European Union Emissions Trading System (EU ETS)," Kiel Working Papers 2052, Kiel Institute for the World Economy (IfW Kiel).
    3. Boeters, Stefan, 2014. "Optimally differentiated carbon prices for unilateral climate policy," Energy Economics, Elsevier, vol. 45(C), pages 304-312.
    4. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    5. Böhringer, Christoph & Keller, Andreas & Bortolamedi, Markus & Rahmeier Seyffarth, Anelise, 2016. "Good things do not always come in threes: On the excess cost of overlapping regulation in EU climate policy," Energy Policy, Elsevier, vol. 94(C), pages 502-508.
    6. Stefan Walter, 2018. "The Regional Impact of Biofuel Economics," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 12(3), pages 369-386, August.
    7. Peter Heindl & Peter J. Wood & Frank Jotzo, 2014. "Combining International Cap-and-Trade with National Carbon Taxes," CCEP Working Papers 1418, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    8. Brink, Corjan & Vollebergh, Herman R.J. & van der Werf, Edwin, 2016. "Carbon pricing in the EU: Evaluation of different EU ETS reform options," Energy Policy, Elsevier, vol. 97(C), pages 603-617.
    9. Corradini, Massimiliano & Costantini, Valeria & Markandya, Anil & Paglialunga, Elena & Sforna, Giorgia, 2018. "A dynamic assessment of instrument interaction and timing alternatives in the EU low-carbon policy mix design," Energy Policy, Elsevier, vol. 120(C), pages 73-84.
    10. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    11. Daniel Gabaldón-Estevan & Elisa Peñalvo-López & David Alfonso Solar, 2018. "The Spanish Turn against Renewable Energy Development," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    12. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    13. Yu-Bong Lai, 2004. "Trade liberalization, consumption externalities and the environment," Economics Bulletin, AccessEcon, vol. 17(5), pages 1-9.
    14. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    15. Giancarlo Giudici & Massimiliano Guerini & Cristina Rossi-Lamastra, 2019. "The creation of cleantech startups at the local level: the role of knowledge availability and environmental awareness," Small Business Economics, Springer, vol. 52(4), pages 815-830, April.
    16. Grüll, Georg & Taschini, Luca, 2011. "Cap-and-trade properties under different hybrid scheme designs," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 107-118, January.
    17. Na Li Dawson & Kathleen Segerson, 2008. "Voluntary Agreements with Industries: Participation Incentives with Industry-Wide Targets," Land Economics, University of Wisconsin Press, vol. 84(1), pages 97-114.
    18. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    19. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    20. Thomas Akpan Harry & Ekemini John Peter & Nsidibe Akpan Udoduk, 2022. "Environmental Impact Assessment Of Oil Producing Communities In Part Of The Niger Delta. A Case Study Of Ibeno, Ikot Abasi, Onna And Esit-Eket Local Government Area In Akwa Ibom State, Nigeria," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 5(2), pages 49-56, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:414-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.