IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v91y2016icp128-137.html
   My bibliography  Save this article

Measuring regional resilience towards fossil fuel supply constraints. Adaptability and vulnerability in socio-ecological Transformations-the case of Austria

Author

Listed:
  • Exner, Andreas
  • Politti, Emilio
  • Schriefl, Ernst
  • Erker, Susanna
  • Stangl, Rosemarie
  • Baud, Sacha
  • Warmuth, Hannes
  • Matzenberger, Julian
  • Kranzl, Lukas
  • Paulesich, Reinhard
  • Windhaber, Markus
  • Supper, Susanne
  • Stöglehner, Gernot

Abstract

Resilience has become a prominent concept to understand system vulnerabilities and flexible ways of adapting to crises. Recently, it gained importance in discussions about the possible peak in oil production (peak oil) and its consequences, which might affect economic performance, social well-being and political stability, and thus also the energy transition to a low-carbon economy. The paper presents a new way of measuring resilience as absolute resilience related to a best practice-model of a resilient society. The resilience model is grounded in explicit theoretical assumptions. All indicators are justified by theoretical and empirical arguments. We present a case study of Austrian municipalities and broader-scale spatial types, which were defined according to their degree of urbanization. The mean resilience of Austrian municipalities is moderate, the difference between resilience values of municipalities is small. Significant differences between spatial types exist. Higher resilience is displayed by less urbanized types due to a higher share of agricultural activities and a more favorable level of GDP per capita. Austria has considerable latitude to improve resilience. Corresponding policies should target resilience components with the lowest values first. A sole focus on regionalization is not recommended. These conclusions are applicable to OECD countries in general.

Suggested Citation

  • Exner, Andreas & Politti, Emilio & Schriefl, Ernst & Erker, Susanna & Stangl, Rosemarie & Baud, Sacha & Warmuth, Hannes & Matzenberger, Julian & Kranzl, Lukas & Paulesich, Reinhard & Windhaber, Markus, 2016. "Measuring regional resilience towards fossil fuel supply constraints. Adaptability and vulnerability in socio-ecological Transformations-the case of Austria," Energy Policy, Elsevier, vol. 91(C), pages 128-137.
  • Handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:128-137
    DOI: 10.1016/j.enpol.2015.12.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515302445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.12.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirsch, Robert L., 2008. "Mitigation of maximum world oil production: Shortage scenarios," Energy Policy, Elsevier, vol. 36(2), pages 881-889, February.
    2. Kathleen Sherrieb & Fran Norris & Sandro Galea, 2010. "Measuring Capacities for Community Resilience," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 99(2), pages 227-247, November.
    3. Paul O'Hare & Iain White, 2013. "Deconstructing Resilience: Lessons from Planning Practice," Planning Practice & Research, Taylor & Francis Journals, vol. 28(3), pages 275-279, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grazia Giacovelli, 2022. "Social Capital and Energy Transition: A Conceptual Review," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    2. Pin Li & Jinsuo Zhang, 2023. "China’s Inter-Provincial Energy Security Resilience Assessment over Space and Time: An Improved Gray Relational Projection Model," Energies, MDPI, vol. 16(7), pages 1-22, March.
    3. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    4. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Luan Santos & Karl Steininger & Marcelle Candido Cordeiro & Johanna Vogel, 2022. "Current Status and Future Perspectives of Carbon Pricing Research in Austria," Sustainability, MDPI, vol. 14(15), pages 1-28, August.
    6. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    7. Kinga Hat & Gernot Stöglehner, 2019. "How Resilient is Growth? Resilience Assessment of Austrian Municipalities on the Basis of Census Data from 1971 to 2011," Sustainability, MDPI, vol. 11(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo Rega & Alessandro Bonifazi, 2020. "The Rise of Resilience in Spatial Planning: A Journey through Disciplinary Boundaries and Contested Practices," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Jones, Lindsey & d'Errico, Marco, 2019. "Whose resilience matters? Like-for-like comparison of objective and subjective evaluations of resilience," World Development, Elsevier, vol. 124(C), pages 1-1.
    3. Xiansheng Chen & Ruisong Quan, 2021. "A spatiotemporal analysis of urban resilience to the COVID-19 pandemic in the Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 829-854, March.
    4. Gaeun Kim & Jiwon Kim & Youngjin Ko & Olebogeng Thelma G. Eyman & Sarwat Chowdhury & Julie Adiwal & Wookyun Lee & Yowhan Son, 2021. "How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    5. Saud Alshehri & Yacine Rezgui & Haijiang Li, 2015. "Delphi-based consensus study into a framework of community resilience to disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2221-2245, February.
    6. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.
    7. Höök, Mikael & Aleklett, Kjell, 2008. "A decline rate study of Norwegian oil production," Energy Policy, Elsevier, vol. 36(11), pages 4262-4271, November.
    8. Paul O'Hare & Iain White & Angela Connelly, 2016. "Insurance as maladaptation: Resilience and the ‘business as usual’ paradox," Environment and Planning C, , vol. 34(6), pages 1175-1193, September.
    9. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    10. Fix, Blair, 2014. "Rethinking Profit: How Redistribution Drives Growth," Working Papers on Capital as Power 2014/02, Capital As Power - Toward a New Cosmology of Capitalism.
    11. Mohammed Abdul-Rahman & Wale Alade & Shahnawaz Anwer, 2023. "A Composite Resilience Index (CRI) for Developing Resilience and Sustainability in University Towns," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    12. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    13. Sahar Zavareh Hofmann, 2022. "Build Back Better and Long-Term Housing Recovery: Assessing Community Housing Resilience and the Role of Insurance Post Disaster," Sustainability, MDPI, vol. 14(9), pages 1-23, May.
    14. Alisha KC & Connie Cai Ru Gan & Febi Dwirahmadi, 2019. "Breaking Through Barriers and Building Disaster Mental Resilience: A Case Study in the Aftermath of the 2015 Nepal Earthquakes," IJERPH, MDPI, vol. 16(16), pages 1-18, August.
    15. Shiva Salehi & Ali Ardalan & Gholamreza Garmaroudi & Abbas Ostadtaghizadeh & Abbas Rahimiforoushani & Armin Zareiyan, 2019. "Climate change adaptation: a systematic review on domains and indicators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 521-550, March.
    16. Hoang Long Nguyen & Rajendra Akerkar, 2020. "Modelling, Measuring, and Visualising Community Resilience: A Systematic Review," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    17. Leslie Gillespie‐Marthaler & Katherine Nelson & Hiba Baroud & Mark Abkowitz, 2019. "Selecting Indicators for Assessing Community Sustainable Resilience," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2479-2498, November.
    18. Fielke, Simon J. & Kaye-Blake, William & Mackay, Alec & Smith, Willie & Rendel, John & Dominati, Estelle, 2018. "Learning from resilience research: Findings from four projects in New Zealand," Land Use Policy, Elsevier, vol. 70(C), pages 322-333.
    19. Yang, Eunjung & Kim, Jinwon & Pennington-Gray, Lori & Ash, Kevin, 2021. "Does tourism matter in measuring community resilience?," Annals of Tourism Research, Elsevier, vol. 89(C).
    20. de Castro, Carlos & Miguel, Luis Javier & Mediavilla, Margarita, 2009. "The role of non conventional oil in the attenuation of peak oil," Energy Policy, Elsevier, vol. 37(5), pages 1825-1833, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:128-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.