IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v70y2014icp1-13.html
   My bibliography  Save this article

Setting MEPS for electronic products

Author

Listed:
  • Siderius, Hans-Paul

Abstract

When analysing price, performance and efficiency data for 15 consumer electronic and information and communication technology products, we found that in general price did not relate to the efficiency of the product. Prices of electronic products with comparable performance decreased over time. For products where the data allowed fitting the relationship, we found an exponential decrease in price with an average time constant of −0.30 [1/year], meaning that every year the product became 26% cheaper on average.

Suggested Citation

  • Siderius, Hans-Paul, 2014. "Setting MEPS for electronic products," Energy Policy, Elsevier, vol. 70(C), pages 1-13.
  • Handle: RePEc:eee:enepol:v:70:y:2014:i:c:p:1-13
    DOI: 10.1016/j.enpol.2014.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514001712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jollands, Nigel & Waide, Paul & Ellis, Mark & Onoda, Takao & Laustsen, Jens & Tanaka, Kanako & de T'Serclaes, Philippine & Barnsley, Ingrid & Bradley, Rick & Meier, Alan, 2010. "The 25 IEA energy efficiency policy recommendations to the G8 Gleneagles Plan of Action," Energy Policy, Elsevier, vol. 38(11), pages 6409-6418, November.
    2. Lim, Seong-Rin & Schoenung, Julie M., 2011. "Measurement and analysis of product energy efficiency to assist energy star criteria development: An example for desktop computers," Energy Policy, Elsevier, vol. 39(12), pages 8003-8010.
    3. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
    4. Sanchez, Marla C. & Brown, Richard E. & Webber, Carrie & Homan, Gregory K., 2008. "Savings estimates for the United States Environmental Protection Agency's ENERGY STAR voluntary product labeling program," Energy Policy, Elsevier, vol. 36(6), pages 2098-2108, June.
    5. Dale, Larry & Antinori, Camille & McNeil, Michael & McMahon, James E. & Sydny Fujita, K., 2009. "Retrospective evaluation of appliance price trends," Energy Policy, Elsevier, vol. 37(2), pages 597-605, February.
    6. Siderius, Hans-Paul, 2013. "The role of experience curves for setting MEPS for appliances," Energy Policy, Elsevier, vol. 59(C), pages 762-772.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safarzadeh, Soroush & Hafezalkotob, Ashkan & Jafari, Hamed, 2022. "Energy supply chain empowerment through tradable green and white certificates: A pathway to sustainable energy generation," Applied Energy, Elsevier, vol. 323(C).
    2. Shi, Xunpeng, 2015. "Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam," Applied Energy, Elsevier, vol. 157(C), pages 1-12.
    3. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radpour, Saeidreza & Hossain Mondal, Md Alam & Kumar, Amit, 2017. "Market penetration modeling of high energy efficiency appliances in the residential sector," Energy, Elsevier, vol. 134(C), pages 951-961.
    2. Desroches, Louis-Benoit & Ganeshalingam, Mohan, 2015. "The dynamics of incremental costs of efficient television display technologies," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 562-574.
    3. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
    4. Gerke, Brian F. & McNeil, Michael A. & Tu, Thomas, 2017. "The International Database of Efficient Appliances (IDEA): A new tool to support appliance energy-efficiency deployment," Applied Energy, Elsevier, vol. 205(C), pages 453-464.
    5. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    6. Souvik Datta & Massimo Filippini, 2012. "Analysing the Impact of ENERGY STAR Rebate Policies in the US," CEPE Working paper series 12-86, CEPE Center for Energy Policy and Economics, ETH Zurich.
    7. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    8. Pizer, William A. & Morgenstern, Richard & Shih, Jhih-Shyang, 2010. "Evaluating Voluntary Climate Programs in the United States," RFF Working Paper Series dp-08-13-rev, Resources for the Future.
    9. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    10. Zha, Donglan & Yang, Guanglei & Wang, Wenzhong & Wang, Qunwei & Zhou, Dequn, 2020. "Appliance energy labels and consumer heterogeneity: A latent class approach based on a discrete choice experiment in China," Energy Economics, Elsevier, vol. 90(C).
    11. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    12. Lim, Seong-Rin & Schoenung, Julie M., 2011. "Measurement and analysis of product energy efficiency to assist energy star criteria development: An example for desktop computers," Energy Policy, Elsevier, vol. 39(12), pages 8003-8010.
    13. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    14. Gilles Grolleau & Lisette Ibanez & Naoufel Mzoughi & Mario Teisl, 2016. "Helping eco-labels to fulfil their promises," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 792-802, August.
    15. Myers, Erica, 2020. "Asymmetric information in residential rental markets: Implications for the energy efficiency gap," Journal of Public Economics, Elsevier, vol. 190(C).
    16. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    17. Galarraga, Ibon & Abadie, Luis M. & Kallbekken, Steffen, 2016. "Designing incentive schemes for promoting energy-efficient appliances: A new methodology and a case study for Spain," Energy Policy, Elsevier, vol. 90(C), pages 24-36.
    18. Pizer, William A. & Morgenstern, Richard & Shih, Jhih-Shyang, 2011. "The performance of industrial sector voluntary climate programs: Climate Wise and 1605(b)," Energy Policy, Elsevier, vol. 39(12), pages 7907-7916.
    19. de la Rue du Can, Stephane & Pudleiner, David & Pielli, Katrina, 2018. "Energy efficiency as a means to expand energy access: A Uganda roadmap," Energy Policy, Elsevier, vol. 120(C), pages 354-364.
    20. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:70:y:2014:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.