IDEAS home Printed from
   My bibliography  Save this article

Energy conservation for international dry bulk carriers via vessel speed reduction


  • Chang, Ching-Chin
  • Chang, Chia-Hong


This study uses an activity-based method to investigate the fuel consumption and corresponding CO2 emissions of Capesize, Panamax, Supramax, and Handysize dry bulk carriers. The emission and energy reductions are estimated for speed reductions of 10%, 20%, and 30%. The CATCH (cost of averting a tonne of CO2—eq heating) model is applied to evaluate the cost efficiency of speed reduction. Results show that speed reductions of 10%, 20%, and 30% reduce fuel consumption by 27.1%, 48.8%, and 60.3% and CO2 emissions by 19%, 36%, and 51%, respectively. Speed reduction leads to emission reductions, with greater reductions for larger ships. CATCH values are positive, indicating that reducing speed increases cost. Line C3 of Capesize is used to determine the optimal ship number and operational speed under energy conservation. The minimum number of vessels in service is 9, with an average operational speed of 14.53 knots and one port call per week. If speed is reduced by 10%, 20%, and 30%, one, two, and four additional ships are needed, respectively.

Suggested Citation

  • Chang, Ching-Chin & Chang, Chia-Hong, 2013. "Energy conservation for international dry bulk carriers via vessel speed reduction," Energy Policy, Elsevier, vol. 59(C), pages 710-715.
  • Handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:710-715
    DOI: 10.1016/j.enpol.2013.04.025

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ernestos Tzannatos, 2010. "Cost assessment of ship emission reduction methods at berth: the case of the Port of Piraeus, Greece," Maritime Policy & Management, Taylor & Francis Journals, vol. 37(4), pages 427-445, July.
    2. repec:eee:jotrge:v:17:y:2009:i:5:p:325-337 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wang, Kun & Fu, Xiaowen & Luo, Meifeng, 2015. "Modeling the impacts of alternative emission trading schemes on international shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 35-49.
    2. Ying Kou & Meifeng Luo, 2016. "Strategic capacity competition and overcapacity in shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(4), pages 389-406, May.
    3. repec:pal:marecl:v:19:y:2017:i:4:d:10.1057_mel.2016.18 is not listed on IDEAS
    4. repec:eee:transe:v:111:y:2018:i:c:p:18-39 is not listed on IDEAS

    More about this item


    Activity-based model; Dry bulk carrier; CO2 emissions;

    JEL classification:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:59:y:2013:i:c:p:710-715. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.