IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v56y2013icp248-258.html
   My bibliography  Save this article

Energy efficiency in the Japanese transport sector

Author

Listed:
  • Lipscy, Phillip Y.
  • Schipper, Lee

Abstract

We examine energy efficiency in the Japanese transportation sector since the 1970s. Comparisons with the United States and other developed economies illustrate that Japan primarily stands out due to low activity levels and modal structure rather than modal energy intensity. On-road automobile energy intensity has shown little improvement, albeit from a low base, over the past four decades. We also consider policy measures undertaken by the Japanese government. Political arrangements in Japan after World War II made it attractive for politicians to pursue energy conservation by making transportation, particularly by automobile, expensive for the average Japanese citizen. The revenues raised from various fees and taxes on automobile transportation were redistributed to core supporters of the ruling Liberal Democratic Party. These political arrangements have come under fire in recent years, calling into question Japan's traditional approach towards transportation sector energy efficiency.

Suggested Citation

  • Lipscy, Phillip Y. & Schipper, Lee, 2013. "Energy efficiency in the Japanese transport sector," Energy Policy, Elsevier, vol. 56(C), pages 248-258.
  • Handle: RePEc:eee:enepol:v:56:y:2013:i:c:p:248-258
    DOI: 10.1016/j.enpol.2012.12.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512010981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.12.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee Schipper & Calanit Saenger & Anant Sudardshan, 2011. "Transport and Carbon Emissions in the United States: The Long View," Energies, MDPI, vol. 4(4), pages 1-19, March.
    2. Adam Millard‐Ball & Lee Schipper, 2011. "Are We Reaching Peak Travel? Trends in Passenger Transport in Eight Industrialized Countries," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 357-378.
    3. Kamakaté, Fatumata & Schipper, Lee, 2009. "Trends in truck freight energy use and carbon emissions in selected OECD countries from 1973 to 2005," Energy Policy, Elsevier, vol. 37(10), pages 3743-3751, October.
    4. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    5. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    6. Kiang, Nancy & Schipper, Lee, 1996. "Energy trends in the Japanese transportation sector," Transport Policy, Elsevier, vol. 3(1-2), pages 21-35.
    7. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amelie Ewert & Mascha Brost & Christine Eisenmann & Sylvia Stieler, 2020. "Small and Light Electric Vehicles: An Analysis of Feasible Transport Impacts and Opportunities for Improved Urban Land Use," Sustainability, MDPI, vol. 12(19), pages 1-17, October.
    2. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    3. Peter Rafaj & Markus Amann, 2018. "Decomposing Air Pollutant Emissions in Asia: Determinants and Projections," Energies, MDPI, vol. 11(5), pages 1-14, May.
    4. Liu, Hongwei & Wu, Jie & Chu, Junfei, 2019. "Environmental efficiency and technological progress of transportation industry-based on large scale data," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 475-482.
    5. Patrick Moriarty & Damon Honnery, 2019. "Energy Efficiency or Conservation for Mitigating Climate Change?," Energies, MDPI, vol. 12(18), pages 1-17, September.
    6. Hashem Omrani & Khatereh Shafaat & Arash Alizadeh, 2019. "Integrated data envelopment analysis and cooperative game for evaluating energy efficiency of transportation sector: a case of Iran," Annals of Operations Research, Springer, vol. 274(1), pages 471-499, March.
    7. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    8. Krzysztof Jaworski, 2022. "Wplyw inwestycji infrastrukturalnych na rozwoj sektora kolejowego w krajach Unii Europejskiej (Impact of Infrastructural Investments on the Development of the Railway Sector in the European Union Coun," Research Reports, University of Warsaw, Faculty of Management, vol. 1(36), pages 29-42.
    9. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    10. Usman Akbar & József Popp & Hameed Khan & Muhammad Asif Khan & Judit Oláh, 2020. "Energy Efficiency in Transportation along with the Belt and Road Countries," Energies, MDPI, vol. 13(10), pages 1-20, May.
    11. Yoo, Sunbin & Yoshida, Yoshikuni, 2019. "Consumer preferences and financial incentives in the Japanese automobile industry," Transport Policy, Elsevier, vol. 81(C), pages 220-229.
    12. Vaclovas Miskinis & Arvydas Galinis & Viktorija Bobinaite & Inga Konstantinaviciute & Eimantas Neniskis, 2023. "Impact of Key Drivers on Energy Intensity and GHG Emissions in Manufacturing in the Baltic States," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    13. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    14. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    15. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    16. Shoki Kosai & Muku Yuasa & Eiji Yamasue, 2020. "Chronological Transition of Relationship between Intracity Lifecycle Transport Energy Efficiency and Population Density," Energies, MDPI, vol. 13(8), pages 1-15, April.
    17. Usman Akbar & Muhammad Asif Khan & Marryum Akmal & Éva Zsuzsanna Tóth Naárné & Judit Oláh, 2020. "Trade-Offs for the Optimal Energy Efficiency of Road Transportation: Domestic Cases in Developing Countries," Energies, MDPI, vol. 13(24), pages 1-14, December.
    18. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    19. de Salvo Junior, Orlando & Saraiva de Souza, Maria Tereza & Vaz de Almeida, Flávio G., 2021. "Implementation of new technologies for reducing fuel consumption of automobiles in Brazil according to the Brazilian Vehicle Labelling Programme," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eom, Jiyong & Schipper, Lee & Thompson, Lou, 2012. "We keep on truckin': Trends in freight energy use and carbon emissions in 11 IEA countries," Energy Policy, Elsevier, vol. 45(C), pages 327-341.
    2. Jennings, Mark & Ó Gallachóir, Brian P. & Schipper, Lee, 2013. "Irish passenger transport: Data refinements, international comparisons, and decomposition analysis," Energy Policy, Elsevier, vol. 56(C), pages 151-164.
    3. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    4. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    5. GUPTA Monika, 2019. "Decomposing The Role Of Different Factors In Co2 Emissions Increase In South Asia," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 72-86, April.
    6. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    7. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    8. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    9. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    10. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    11. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    12. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    13. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    14. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    15. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    16. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    17. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    18. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    19. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
    20. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:56:y:2013:i:c:p:248-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.