IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i12p8196-8199.html
   My bibliography  Save this article

Reducing the greenhouse gas footprint of shale gas

Author

Listed:
  • Wang, Jinsheng
  • Ryan, David
  • Anthony, Edward J.

Abstract

Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO2 than the equivalent CO2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost.

Suggested Citation

  • Wang, Jinsheng & Ryan, David & Anthony, Edward J., 2011. "Reducing the greenhouse gas footprint of shale gas," Energy Policy, Elsevier, vol. 39(12), pages 8196-8199.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:8196-8199
    DOI: 10.1016/j.enpol.2011.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151100797X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanzi, Elisa & Verdolini, Elena & Haščič, Ivan, 2011. "Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends," Energy Policy, Elsevier, vol. 39(11), pages 7000-7014.
    2. Rahm, Dianne, 2011. "Regulating hydraulic fracturing in shale gas plays: The case of Texas," Energy Policy, Elsevier, vol. 39(5), pages 2974-2981, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blohm, Andrew & Peichel, Jeremy & Smith, Caroline & Kougentakis, Alexandra, 2012. "The significance of regulation and land use patterns on natural gas resource estimates in the Marcellus shale," Energy Policy, Elsevier, vol. 50(C), pages 358-369.
    2. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.
    3. Napp, T.A. & Gambhir, A. & Hills, T.P. & Florin, N. & Fennell, P.S, 2014. "A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 616-640.
    4. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    5. Holahan, Robert & Arnold, Gwen, 2013. "An institutional theory of hydraulic fracturing policy," Ecological Economics, Elsevier, vol. 94(C), pages 127-134.
    6. Karel JANDA & Jakub KOURILEK & Sarah TRABELSI, 2017. "Price Co Movement between Biodiesel and Natural Gas," Journal of Advanced Research in Management, ASERS Publishing, vol. 8(1), pages 7-16.
    7. Johnson, Corey & Boersma, Tim, 2013. "Energy (in)security in Poland the case of shale gas," Energy Policy, Elsevier, vol. 53(C), pages 389-399.
    8. Chen, Yizhong & Li, Jing & Lu, Hongwei & Yang, Yiyang, 2020. "Impact of unconventional natural gas development on regional water resources and market supply in China from the perspective of game analysis," Energy Policy, Elsevier, vol. 145(C).
    9. Janda, Karel & Kourilek, Jakub, 2016. "Description of Biofuels and Shale Gas Development," MPRA Paper 74885, University Library of Munich, Germany.
    10. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lionel Nesta & Elena Verdolini & Francesco Vona, 2018. "Threshold Policy Effects and Directed Technical Change in Energy Innovation," Documents de Travail de l'OFCE 2018-05, Observatoire Francais des Conjonctures Economiques (OFCE).
    2. Zilliox, Skylar & Smith, Jessica M., 2017. "Memorandums of understanding and public trust in local government for Colorado's unconventional energy industry," Energy Policy, Elsevier, vol. 107(C), pages 72-81.
    3. Song, Yanwu & Zhang, Jinrui & Song, Yingkang & Fan, Xinran & Zhu, Yuqing & Zhang, Chen, 2020. "Can industry-university-research collaborative innovation efficiency reduce carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    4. Kriesky, J. & Goldstein, B.D. & Zell, K. & Beach, S., 2013. "Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity," Energy Policy, Elsevier, vol. 58(C), pages 228-236.
    5. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    6. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Valentina Bosetti & Elena Verdolini, 2013. "Clean and Dirty International Technology Diffusion," Working Papers 2013.43, Fondazione Eni Enrico Mattei.
    8. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    9. Yasminah Beebeejaun, 2017. "Exploring the intersections between local knowledge and environmental regulation: A study of shale gas extraction in Texas and Lancashire," Environment and Planning C, , vol. 35(3), pages 417-433, May.
    10. Joëlle Noailly & Roger Smeets, 2022. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 145-169, September.
    11. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    12. Fry, Matthew, 2013. "Urban gas drilling and distance ordinances in the Texas Barnett Shale," Energy Policy, Elsevier, vol. 62(C), pages 79-89.
    13. Robert K. Perrons & Adam B. Jaffe & Trinh Le, 2020. "Tracing the Linkages Between Scientific Research and Energy Innovations: A Comparison of Clean and Dirty Technologies," NBER Working Papers 27777, National Bureau of Economic Research, Inc.
    14. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    15. Timmins, Christopher & Vissing, Ashley, 2022. "Environmental justice and Coasian bargaining: The role of race, ethnicity, and income in lease negotiations for shale gas," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    16. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2013. "Can non-market regulations spur innovations in environmental technologies? A study on firm level patenting," Discussion Papers 754, Statistics Norway, Research Department.
    17. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Arnold, Gwen & Farrer, Benjamin & Holahan, Robert, 2018. "How do landowners learn about high-volume hydraulic fracturing? A survey of Eastern Ohio landowners in active or proposed drilling units," Energy Policy, Elsevier, vol. 114(C), pages 455-464.
    19. Zhang, Hongyan & Zhang, Lin, 2023. "Public support and energy innovation: Why do firms react differently?," Energy Economics, Elsevier, vol. 119(C).
    20. Dianne Rahm & Jayce L. Farmer & Billy Fields, 2016. "The Eagle Ford Shale Development and Local Government Fiscal Behavior," Public Budgeting & Finance, Wiley Blackwell, vol. 36(3), pages 45-68, September.

    More about this item

    Keywords

    Shale gas; Global warming potential; CO2 storage;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:8196-8199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.