IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i6p2395-2410.html
   My bibliography  Save this article

National electricity planning in settings with low pre-existing grid coverage: Development of a spatial model and case study of Kenya

Author

Listed:
  • Parshall, Lily
  • Pillai, Dana
  • Mohan, Shashank
  • Sanoh, Aly
  • Modi, Vijay

Abstract

We develop a spatial electricity planning model to guide grid expansion in countries with low pre-existing electricity coverage. The model can be used to rapidly estimate connection costs and compare different regions and communities. Inputs that are modeled include electricity demand, costs, and geographic characteristics. The spatial nature of the model permits accurate representation of the existing electricity network and population distribution, which form the basis for future expansion decisions. The methodology and model assumptions are illustrated using country-specific data from Kenya. Results show that under most geographic conditions, extension of the national grid is less costly than off-grid options. Based on realistic penetration rates for Kenya, we estimate an average connection cost of $1900 per household, with lower-cost connection opportunities around major cities and in denser rural regions. In areas with an adequate pre-existing medium-voltage backbone, we estimate that over 30% of households could be connected for less than $1000 per connection through infilling. The penetration rate, an exogenous factor chosen by electricity planners, is found to have a large effect on household connection costs, often outweighing socio-economic and spatial factors such as inter-household distance, per-household demand, and proximity to the national grid.

Suggested Citation

  • Parshall, Lily & Pillai, Dana & Mohan, Shashank & Sanoh, Aly & Modi, Vijay, 2009. "National electricity planning in settings with low pre-existing grid coverage: Development of a spatial model and case study of Kenya," Energy Policy, Elsevier, vol. 37(6), pages 2395-2410, June.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:6:p:2395-2410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00056-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Independent Evaluation Group, 2008. "The Welfare Impact of Rural Electrification : A Reassessment of the Costs and Benefits," World Bank Publications - Books, The World Bank Group, number 6519, December.
    2. Haanyika, Charles Moonga, 2006. "Rural electrification policy and institutional linkages," Energy Policy, Elsevier, vol. 34(17), pages 2977-2993, November.
    3. Carlos Rufín & U. Srinivasa Rangan & Rajesh Kumar, 2003. "The Changing Role of the State in the Electricity Industry in Brazil, China, and India," American Journal of Economics and Sociology, Wiley Blackwell, vol. 62(4), pages 649-675, October.
    4. Munasinghe, Mohan, 1988. "The economics of rural electrification projects," Energy Economics, Elsevier, vol. 10(1), pages 3-17, January.
    5. Zvoleff, Alex & Kocaman, Ayse Selin & Huh, Woonghee Tim & Modi, Vijay, 2009. "The impact of geography on energy infrastructure costs," Energy Policy, Elsevier, vol. 37(10), pages 4066-4078, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Williams, Nathaniel J. & Jaramillo, Paulina & Taneja, Jay & Ustun, Taha Selim, 2015. "Enabling private sector investment in microgrid-based rural electrification in developing countries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1268-1281.
    2. Zvoleff, Alex & Kocaman, Ayse Selin & Huh, Woonghee Tim & Modi, Vijay, 2009. "The impact of geography on energy infrastructure costs," Energy Policy, Elsevier, vol. 37(10), pages 4066-4078, October.
    3. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    4. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    5. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    6. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    7. Salmon, Claire & Tanguy, Jeremy, 2016. "Rural Electrification and Household Labor Supply: Evidence from Nigeria," World Development, Elsevier, vol. 82(C), pages 48-68.
    8. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    9. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    10. Dominique van de Walle & Martin Ravallion & Vibhuti Mendiratta & Gayatri Koolwal, 2017. "Long-term Gains from Electrification in Rural India," The World Bank Economic Review, World Bank Group, vol. 31(2), pages 385-411.
    11. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    12. Gunther Bensch & Jochen Kluve & Jörg Peters, 2011. "Impacts of rural electrification in Rwanda," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 3(4), pages 567-588, December.
    13. Joshi, Lalita & Choudhary, Deepak & Kumar, Praveen & Venkateswaran, Jayendran & Solanki, Chetan S., 2019. "Does involvement of local community ensure sustained energy access? A critical review of a solar PV technology intervention in rural India," World Development, Elsevier, vol. 122(C), pages 272-281.
    14. Alejandro López-González & Bruno Domenech & Laia Ferrer-Martí, 2021. "Sustainability Evaluation of Rural Electrification in Cuba: From Fossil Fuels to Modular Photovoltaic Systems: Case Studies from Sancti Spiritus Province," Energies, MDPI, vol. 14(9), pages 1-17, April.
    15. Levin, Todd & Thomas, Valerie M., 2012. "Least-cost network evaluation of centralized and decentralized contributions to global electrification," Energy Policy, Elsevier, vol. 41(C), pages 286-302.
    16. Gupta, Ridhima & Pelli, Martino, 2021. "Electrification and cooking fuel choice in rural India," World Development, Elsevier, vol. 146(C).
    17. Tooraj Jamasb & Rabindra Nepal & Govinda Timilsina & Michael Toman, 2014. "Energy Sector Reform, Economic Efficiency and Poverty Reduction," Discussion Papers Series 529, School of Economics, University of Queensland, Australia.
    18. Balachandra, P., 2011. "Modern energy access to all in rural India: An integrated implementation strategy," Energy Policy, Elsevier, vol. 39(12), pages 7803-7814.
    19. Mbalyohere, Charles & Lawton, Thomas & Boojihawon, Roshan & Viney, Howard, 2017. "Corporate political activity and location-based advantage: MNE responses to institutional transformation in Uganda’s electricity industry," Journal of World Business, Elsevier, vol. 52(6), pages 743-759.
    20. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:6:p:2395-2410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.