IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i12p4427-4433.html
   My bibliography  Save this article

Technologies to achieve demand reduction and microgeneration in buildings

Author

Listed:
  • Hinnells, Mark

Abstract

Buildings account for almost half of UK carbon dioxide emissions, and energy demand in buildings continues to grow. In the context of economic growth, population growth, increasing demand for homes and commercial floor space, and increasing demand for energy services, energy use and probably carbon emissions look set to continue to increase unless there is significant change. This paper outlines enabling technologies that may permit a step-change reduction in energy demand from buildings through the application of next-generation information metering and control, energy-efficiency products and microgeneration. It covers both residential and non-residential buildings. This wide approach has been adopted because technologies and trends tend to migrate from one building sector to another, as, for example, IT has moved from offices into homes and lighting trends from offices and retail into homes. It covers technologies that can be used in new build or major refurbishment. Much of the need for change involves the better use of known technology, and some involves changing behaviour. Some behaviour depends on new technologies such as metering. Understanding how technological innovations are taken up (e.g. stock turnover issues, as well as how technical change occurs) and the economics of new technologies is as important as the technologies themselves.

Suggested Citation

  • Hinnells, Mark, 2008. "Technologies to achieve demand reduction and microgeneration in buildings," Energy Policy, Elsevier, vol. 36(12), pages 4427-4433, December.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:12:p:4427-4433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00461-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy J. Foxon & Jonathan Köhler & Christine Oughton (ed.), 2008. "Innovation for a Low Carbon Economy," Books, Edward Elgar Publishing, number 12790.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eunji Kim & Yoonhee Ha, 2021. "Vitalization Strategies for the Building Energy Management System (BEMS) Industry Ecosystem Based on AHP Analysis," Energies, MDPI, vol. 14(9), pages 1-16, April.
    2. Schaffrin, André & Reibling, Nadine, 2015. "Household energy and climate mitigation policies: Investigating energy practices in the housing sector," Energy Policy, Elsevier, vol. 77(C), pages 1-10.
    3. Kesicki, Fabian & Anandarajah, Gabrial, 2011. "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7224-7233.
    4. Carlucci, Salvatore & Causone, Francesco & De Rosa, Francesco & Pagliano, Lorenzo, 2015. "A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 1016-1033.
    5. Finney, Karen N. & Sharifi, Vida N. & Swithenbank, Jim, 2012. "The negative impacts of the global economic downturn on funding decentralised energy in the UK," Energy Policy, Elsevier, vol. 51(C), pages 290-300.
    6. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    7. Ochieng, E.G. & Jones, N. & Price, A.D.F. & Ruan, X. & Egbu, C.O & Zuofa, T., 2014. "Integration of energy efficient technologies in UK supermarkets," Energy Policy, Elsevier, vol. 67(C), pages 388-393.
    8. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    9. Nardelli, Andrei & Deuschle, Eduardo & de Azevedo, Leticia Dalpaz & Pessoa, João Lorenço Novaes & Ghisi, Enedir, 2017. "Assessment of Light Emitting Diodes technology for general lighting: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 368-379.
    10. Xing, Yangang & Hewitt, Neil & Griffiths, Philip, 2011. "Zero carbon buildings refurbishment--A Hierarchical pathway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3229-3236, August.
    11. Nick Eyre, 2013. "Decentralization of governance in the low-carbon transition," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 27, pages 581-597, Edward Elgar Publishing.
    12. Roelich, Katy & Knoeri, Christof & Steinberger, Julia K. & Varga, Liz & Blythe, Phil T. & Butler, David & Gupta, Rajat & Harrison, Gareth P. & Martin, Chris & Purnell, Phil, 2015. "Towards resource-efficient and service-oriented integrated infrastructure operation," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 40-52.
    13. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    14. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    15. Liu, Pei & Pistikopoulos, Efstratios N. & Li, Zheng, 2010. "An energy systems engineering approach to the optimal design of energy systems in commercial buildings," Energy Policy, Elsevier, vol. 38(8), pages 4224-4231, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Andreasen, Kristian & Sovacool, Benjamin K., 2014. "Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 891-897.
    2. Abdelillah Hamdouch & Marc-Hubert Depret, 2010. "Policy integration strategy and the development of the 'green economy': foundations and implementation patterns," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(4), pages 473-490.
    3. Andersen, Allan Dahl & Andersen, Per Dannemand, 2014. "Innovation system foresight," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 276-286.
    4. Fouquet, Roger, 2012. "The demand for environmental quality in driving transitions to low-polluting energy sources," Energy Policy, Elsevier, vol. 50(C), pages 138-149.
    5. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    6. Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Neukirch, Mario, 2012. "Adaptive capacities, path creation and variants of sectoral change: The case of the transformation of the German energy supply system," Research Contributions to Organizational Sociology and Innovation Studies, SOI Discussion Papers 2012-02, University of Stuttgart, Institute for Social Sciences, Department of Organizational Sociology and Innovation Studies.
    7. J. Ivan Scrase & Adrian Smith & Florian Kern, 2010. "Dynamics and deliberations: comparing heuristics for low carbon innovation policy," SPRU Working Paper Series 184, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Marianne Haug, 2011. "Clean energy and international oil," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 27(1), pages 92-116, Spring.
    9. Hinnells, Mark, 2008. "Combined heat and power in industry and buildings," Energy Policy, Elsevier, vol. 36(12), pages 4522-4526, December.
    10. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    11. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    12. Köhler, Jonathan & Raven, Rob & Walrave, Bob, 2020. "Advancing the analysis of technological innovation systems dynamics: Introduction to the special issue," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    13. Brown, James & Hendry, Chris, 2009. "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, Elsevier, vol. 37(7), pages 2560-2573, July.
    14. Schleich, Joachim & Walz, Rainer & Ragwitz, Mario, 2017. "Effects of policies on patenting in wind-power technologies," Energy Policy, Elsevier, vol. 108(C), pages 684-695.
    15. Pelau Corina & Chinie Alexandra-Catalina, 2018. "Cluster Analysis for the Determination of Innovative and Sustainable Oriented Regions in Europe," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 28(2), pages 36-47, June.
    16. Hedeler, Barbara & Lettner, Miriam & Stern, Tobias & Schwarzbauer, Peter & Hesser, Franziska, 2020. "Strategic decisions on knowledge development and diffusion at pilot and demonstration projects: An empirical mapping of actors, projects and strategies in the case of circular forest bioeconomy," Forest Policy and Economics, Elsevier, vol. 110(C).
    17. Roger Fouquet, 2013. "Low-carbon economy: dark age or golden age?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 32, pages 682-708, Edward Elgar Publishing.
    18. Theophilus Ifeanyichukwu Amokwu, 2016. "Repositioning renewable energy for rural electrification in a fossil fuel-rich economy," Journal of Community Positive Practices, Catalactica NGO, issue 2, pages 70-85.
    19. Michael Nye & Lorraine Whitmarsh & Timothy Foxon, 2010. "Sociopsychological Perspectives on the Active Roles of Domestic Actors in Transition to a Lower Carbon Electricity Economy," Environment and Planning A, , vol. 42(3), pages 697-714, March.
    20. Friedemann Polzin & Paschen von Flotow & Colin Nolden, 2015. "Exploring the Role of Servitization to Overcome Barriers for Innovative Energy Efficiency Technologies – The Case of Public LED Street Lighting in German Municipalities," SPRU Working Paper Series 2015-07, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:12:p:4427-4433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.