IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i12p5980-5990.html
   My bibliography  Save this article

Impacts of policy means for increased use of forest-based bioenergy in Norway--A spatial partial equilibrium analysis

Author

Listed:
  • Tromborg, Erik
  • Bolkesjo, Torjus Folsland
  • Solberg, Birger

Abstract

No abstract is available for this item.

Suggested Citation

  • Tromborg, Erik & Bolkesjo, Torjus Folsland & Solberg, Birger, 2007. "Impacts of policy means for increased use of forest-based bioenergy in Norway--A spatial partial equilibrium analysis," Energy Policy, Elsevier, vol. 35(12), pages 5980-5990, December.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:12:p:5980-5990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(07)00354-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christiansen, Atle Christer, 2002. "New renewable energy developments and the climate change issue: a case study of Norwegian politics," Energy Policy, Elsevier, vol. 30(3), pages 235-243, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    2. Sandberg, Eli & Sneum, Daniel Møller & Trømborg, Erik, 2018. "Framework conditions for Nordic district heating - Similarities and differences, and why Norway sticks out," Energy, Elsevier, vol. 149(C), pages 105-119.
    3. Jåstad, Eirik Ogner & Mustapha, Walid Fayez & Bolkesjø, Torjus Folsland & Trømborg, Erik & Solberg, Birger, 2018. "Modelling of uncertainty in the economic development of the Norwegian forest sector," Journal of Forest Economics, Elsevier, vol. 32(C), pages 106-115.
    4. Assefa Hagos, Dejene & Gebremedhin, Alemayehu & Folsland Bolkesjø, Torjus, 2015. "Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway," Energy Policy, Elsevier, vol. 85(C), pages 386-396.
    5. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    6. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    7. Trømborg, Erik & Havskjold, Monica & Lislebø, Ole & Rørstad, Per Kristian, 2011. "Projecting demand and supply of forest biomass for heating in Norway," Energy Policy, Elsevier, vol. 39(11), pages 7049-7058.
    8. Mustapha, Walid Fayez & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2019. "Forest-based biofuel production in the Nordic countries: Modelling of optimal allocation," Forest Policy and Economics, Elsevier, vol. 103(C), pages 45-54.
    9. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Zethraeus, Björn, 2014. "Towards a flexible energy system – A case study for Inland Norway," Applied Energy, Elsevier, vol. 130(C), pages 41-50.
    10. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barkaoui, Ahmed, 2013. "Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model," Energy Policy, Elsevier, vol. 63(C), pages 338-347.
    11. van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
    12. Kallio, A. Maarit I. & Anttila, Perttu & McCormick, Megan & Asikainen, Antti, 2011. "Are the Finnish targets for the energy use of forest chips realistic--Assessment with a spatial market model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 110-126, April.
    13. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    14. Peyman Alizadeh & Lope G. Tabil & Edmund Mupondwa & Xue Li & Duncan Cree, 2023. "Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust," Energies, MDPI, vol. 16(4), pages 1-18, February.
    15. Lauri, Pekka & Kallio, A. Maarit I. & Schneider, Uwe A., 2012. "Price of CO2 emissions and use of wood in Europe," Forest Policy and Economics, Elsevier, vol. 15(C), pages 123-131.
    16. Tolón-Becerra, A. & Lastra-Bravo, X. & Bienvenido-Bárcena, F., 2010. "Methodology proposal for territorial distribution of greenhouse gas reduction percentages in the EU according to the strategic energy policy goal," Applied Energy, Elsevier, vol. 87(11), pages 3552-3564, November.
    17. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    18. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kvellheim, Ann Kristin, 2017. "The power of buildings in climate change mitigation: The case of Norway," Energy Policy, Elsevier, vol. 110(C), pages 653-661.
    2. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 207-217.
    3. Buen, Jorund, 2006. "Danish and Norwegian wind industry: The relationship between policy instruments, innovation and diffusion," Energy Policy, Elsevier, vol. 34(18), pages 3887-3897, December.
    4. Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Emad Kazemzadeh & Volkan Kaymaz, 2024. "Renewable energy deployment in Europe: Do politics matter?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28751-28784, November.
    5. Qingchang Li & Seungkook Roh & Jin Won Lee, 2020. "Segmenting the South Korean Public According to Their Preferred Direction for Electricity Mix Reform," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    6. HÃ¥vard Haarstad & Grete Rusten, 2016. "The challenges of greening energy: policy/industry dissonance at the Mongstad refinery, Norway," Environment and Planning C, , vol. 34(2), pages 340-355, March.
    7. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    8. Calbick, K.S. & Gunton, Thomas, 2014. "Differences among OECD countries’ GHG emissions: Causes and policy implications," Energy Policy, Elsevier, vol. 67(C), pages 895-902.
    9. Geir Skjevrak & Bertha Maya Sopha, 2012. "Wood-Pellet Heating in Norway: Early Adopters’ Satisfaction and Problems That Have Been Experienced," Sustainability, MDPI, vol. 4(6), pages 1-15, May.
    10. Assel K. Kozhakhmetova & Kenzhebek T. Gabdullin & Duissekul A. Kunanbayeva & Samal K. Tazhiyeva & Renata E. Kydaybergenova, 2019. "Green Energy Project`s Efficiency: A Cross-industry Evaluation," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 207-215.
    11. Riesz, Jenny & Elliston, Ben, 2016. "Research and deployment priorities for renewable technologies: Quantifying the importance of various renewable technologies for low cost, high renewable electricity systems in an Australian case study," Energy Policy, Elsevier, vol. 98(C), pages 298-308.
    12. Sopha, Bertha Maya & Klöckner, Christian A. & Skjevrak, Geir & Hertwich, Edgar G., 2010. "Norwegian households' perception of wood pellet stove compared to air-to-air heat pump and electric heating," Energy Policy, Elsevier, vol. 38(7), pages 3744-3754, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:12:p:5980-5990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.