IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v155y2021ics0301421521002032.html
   My bibliography  Save this article

Evaluating available solar photovoltaic business opportunities in coal phase-out regions – An energy transition case of Steve Tshwete local municipality in South Africa

Author

Listed:
  • Stanley Semelane,
  • Nnamdi Nwulu,
  • Njabulo Kambule,
  • Henerica Tazvinga,

Abstract

The global energy transition may have unintended consequences for businesses that provide services to the coal sector. Businesses operating in coal regions like Steve Tshwete Local Municipality (STLM) might be left stranded due to the coal phase-out. However, solar photovoltaic (PV) business opportunities can support a just energy transition. The diffusion of solar PV owing to the available grid infrastructure and solar energy resource (5.61 kW/m2/day) in STLM, South Africa positions this region as a potential solar development area. Therefore, leveraging solar PV commercial benefits for local enterprises is just. This study deployed a structured survey to understand solar business involvement and opportunities in STLM. The study found that 57.1% of businesses operating in STLM offer services to either coal mines or coal power stations. Only 14.3% of businesses were found to have offered services in the solar PV sector, signalling low participation. However, this does not mean that STLM businesses cannot increase their participation in the solar PV sector thus mitigate against potential coal phase-out socio-economic impacts. The exploratory factor analysis deployed for data analysis showed two factors (solar opportunities and regional participation) that were found to be reliable and valid on the Cronbach's Alpha test.

Suggested Citation

  • Stanley Semelane, & Nnamdi Nwulu, & Njabulo Kambule, & Henerica Tazvinga,, 2021. "Evaluating available solar photovoltaic business opportunities in coal phase-out regions – An energy transition case of Steve Tshwete local municipality in South Africa," Energy Policy, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:enepol:v:155:y:2021:i:c:s0301421521002032
    DOI: 10.1016/j.enpol.2021.112333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521002032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Ulrich Elmer & Pedersen, Mathilde Brix & Nygaard, Ivan, 2015. "Review of solar PV policies, interventions and diffusion in East Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 236-248.
    2. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.
    3. Nancy Leech & Anthony Onwuegbuzie, 2009. "A typology of mixed methods research designs," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(2), pages 265-275, March.
    4. Karakaya, Emrah & Nuur, Cali & Hidalgo, Antonio, 2016. "Business model challenge: Lessons from a local solar company," Renewable Energy, Elsevier, vol. 85(C), pages 1026-1035.
    5. Louie, Edward P. & Pearce, Joshua M., 2016. "Retraining investment for U.S. transition from coal to solar photovoltaic employment," Energy Economics, Elsevier, vol. 57(C), pages 295-302.
    6. Katalin Bódis & Ioannis Kougias & Nigel Taylor & Arnulf Jäger-Waldau, 2019. "Solar Photovoltaic Electricity Generation: A Lifeline for the European Coal Regions in Transition," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    7. Fabrizio, Kira R. & Hawn, Olga, 2013. "Enabling diffusion: How complementary inputs moderate the response to environmental policy," Research Policy, Elsevier, vol. 42(5), pages 1099-1111.
    8. Sooriyaarachchi, Thilanka M. & Tsai, I-Tsung & El Khatib, Sameh & Farid, Amro M. & Mezher, Toufic, 2015. "Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 653-668.
    9. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    10. de Queiroz, A.R. & Mulcahy, D. & Sankarasubramanian, A. & Deane, J.P. & Mahinthakumar, G. & Lu, N. & DeCarolis, J.F., 2019. "Repurposing an energy system optimization model for seasonal power generation planning," Energy, Elsevier, vol. 181(C), pages 1321-1330.
    11. Zhang, Fang & Gallagher, Kelly Sims, 2016. "Innovation and technology transfer through global value chains: Evidence from China's PV industry," Energy Policy, Elsevier, vol. 94(C), pages 191-203.
    12. Ulrich Dewald & Bernhard Truffer, 2011. "Market Formation in Technological Innovation Systems—Diffusion of Photovoltaic Applications in Germany," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 285-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neij, Lena & Heiskanen, Eva & Strupeit, Lars, 2017. "The deployment of new energy technologies and the need for local learning," Energy Policy, Elsevier, vol. 101(C), pages 274-283.
    2. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    3. Karakaya, Emrah, 2016. "Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how?," Applied Energy, Elsevier, vol. 163(C), pages 464-475.
    4. Zahedi Rad, Vahid & Seifi, Abbas & Fadai, Dawud, 2023. "Policy design for transition from imitation to innovation in emerging photovoltaic sectors using a system dynamics model," Energy Policy, Elsevier, vol. 183(C).
    5. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    6. Xiong, Yongqing & Yang, Xiaohan, 2016. "Government subsidies for the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 99(C), pages 111-119.
    7. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    8. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    9. Karakaya, Emrah & Nuur, Cali & Hidalgo, Antonio, 2016. "Business model challenge: Lessons from a local solar company," Renewable Energy, Elsevier, vol. 85(C), pages 1026-1035.
    10. Kriechbaum, Michael & López Prol, Javier & Posch, Alfred, 2018. "Looking back at the future: Dynamics of collective expectations about photovoltaic technology in Germany & Spain," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 76-87.
    11. Doblinger, Claudia & Surana, Kavita & Li, Deyu & Hultman, Nathan & Anadón, Laura Díaz, 2022. "How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers," Research Policy, Elsevier, vol. 51(7).
    12. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    13. Karakaya, Emrah & Sriwannawit, Pranpreya, 2015. "Barriers to the adoption of photovoltaic systems: The state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 60-66.
    14. Ogura, Yasuhiro, 2020. "Policy as a “porter” of RE component export or import? Evidence from PV/wind energy in OECD and BRICS," Energy Economics, Elsevier, vol. 86(C).
    15. Koerner, Sonja Angelika & Siew, Wei Sian & Salema, Arshad Adam & Balan, Poovarasi & Mekhilef, Saad & Thavamoney, Nisha, 2022. "Energy policies shaping the solar photovoltaics business models in Malaysia with some insights on Covid-19 pandemic effect," Energy Policy, Elsevier, vol. 164(C).
    16. Horváth, Dóra & Szabó, Roland Zs., 2018. "Evolution of photovoltaic business models: Overcoming the main barriers of distributed energy deployment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 623-635.
    17. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    18. Allan, Grant J. & Ross, Andrew G., 2019. "The characteristics of energy employment in a system-wide context," Energy Economics, Elsevier, vol. 81(C), pages 238-258.
    19. Gabriel, Cle-Anne, 2016. "What is challenging renewable energy entrepreneurs in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 362-371.
    20. Karakaya, Emrah & Hidalgo, Antonio & Nuur, Cali, 2015. "Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1090-1098.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:155:y:2021:i:c:s0301421521002032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.