IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v121y2018icp35-47.html
   My bibliography  Save this article

Assessment of public charging infrastructure push and pull rollout strategies: The case of the Netherlands

Author

Listed:
  • Helmus, J.R.
  • Spoelstra, J.C.
  • Refa, N.
  • Lees, M.
  • van den Hoed, R.

Abstract

Over recent years, numbers of electric vehicles (EVs) have shown a strong growth and sales are projected to continue to grow. For facilitating charging possibilities for EVs typically two rollout strategies have been applied; demand-driven and strategic rollout. This study focuses on determining the differences in performance metrics of the two rollout strategies by first defining key performance metrics. Thereafter, the root causes of performance differences between the two rollout strategies are investigated. This study analyzes charging data of 1,007,137 transactions on 1742 different CPs by use of 53,850 unique charging cards. This research concludes that demand-driven CPs outperform strategic CPs on weekly energy transfer and connection duration, while strategic CPs outperform their demand-driven counterparts on charging time ratio. Regarding users facilitated, there is a significant change in performance after massive EV-uptake. The root cause analysis shows effects of EV uptake and user type composition on the differences in performance metrics. This research concludes with implications for policy makers regarding an optimal portfolio of rollout strategies.

Suggested Citation

  • Helmus, J.R. & Spoelstra, J.C. & Refa, N. & Lees, M. & van den Hoed, R., 2018. "Assessment of public charging infrastructure push and pull rollout strategies: The case of the Netherlands," Energy Policy, Elsevier, vol. 121(C), pages 35-47.
  • Handle: RePEc:eee:enepol:v:121:y:2018:i:c:p:35-47
    DOI: 10.1016/j.enpol.2018.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518303999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    2. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
    3. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    4. Robinson, A.P. & Blythe, P.T. & Bell, M.C. & Hübner, Y. & Hill, G.A., 2013. "Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips," Energy Policy, Elsevier, vol. 61(C), pages 337-348.
    5. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    6. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    7. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    8. De Gennaro, Michele & Paffumi, Elena & Scholz, Harald & Martini, Giorgio, 2014. "GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on the electric energy grid," Applied Energy, Elsevier, vol. 124(C), pages 94-116.
    9. Nie, Yu (Marco) & Ghamami, Mehrnaz, 2013. "A corridor-centric approach to planning electric vehicle charging infrastructure," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 172-190.
    10. Sathaye, Nakul & Kelley, Scott, 2013. "An approach for the optimal planning of electric vehicle infrastructure for highway corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 15-33.
    11. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    12. Saarenpää, Jukka & Kolehmainen, Mikko & Niska, Harri, 2013. "Geodemographic analysis and estimation of early plug-in hybrid electric vehicle adoption," Applied Energy, Elsevier, vol. 107(C), pages 456-464.
    13. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    14. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Lucas & Giuseppe Prettico & Marco Giacomo Flammini & Evangelos Kotsakis & Gianluca Fulli & Marcelo Masera, 2018. "Indicator-Based Methodology for Assessing EV Charging Infrastructure Using Exploratory Data Analysis," Energies, MDPI, vol. 11(7), pages 1-18, July.
    2. Mangipinto, Andrea & Lombardi, Francesco & Sanvito, Francesco Davide & Pavičević, Matija & Quoilin, Sylvain & Colombo, Emanuela, 2022. "Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries," Applied Energy, Elsevier, vol. 312(C).
    3. Milan Straka & Rui Carvalho & Gijs van der Poel & v{L}ubov{s} Buzna, 2020. "Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data," Papers 2006.01672, arXiv.org, revised Jun 2020.
    4. Lap, Tjerk & Benders, René & van der Hilst, Floor & Faaij, André, 2020. "How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?," Energy, Elsevier, vol. 195(C).
    5. Hardman, Scott & Garas, Dahlia & Allen, Jeff & Axsen, Jonn & Beard, George & Dütschke, Elisabeth & Daina, Nicolò & Figenbaum, Erik & Jochem, Patrick & Nicholas, Michael & Plötz, Patrick & Refa, Nazir , 2020. "Exploring the Role of Cities in Electrifying Passenger Transportation," Institute of Transportation Studies, Working Paper Series qt8q2917sh, Institute of Transportation Studies, UC Davis.
    6. Wouter P. L. van Galen & Bob Walrave & Sharon A. M. Dolmans & A. Georges L. Romme, 2021. "Charging for Collaboration: Exploring the Dynamics of Temporal Fit in Interdependent Constellations for Innovation," Energies, MDPI, vol. 14(17), pages 1-23, August.
    7. Soetevent, Adriaan R., 2021. "I’d Like to Move It! Consumption Rivalry in the EV Public Charging Market: Demand Estimation with Deterministic Choice Set Variation," EconStor Preprints 228520, ZBW - Leibniz Information Centre for Economics.
    8. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.
    9. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    10. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Meintjes, Tiago & Castro, Rui & Pires, A.J., 2021. "Impact of vehicle charging on Portugal's national electricity load profile in 2030," Utilities Policy, Elsevier, vol. 73(C).
    12. Alexandra Märtz & Uwe Langenmayr & Sabrina Ried & Katrin Seddig & Patrick Jochem, 2022. "Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real-World Data," Energies, MDPI, vol. 15(18), pages 1-26, September.
    13. Marisca Zweistra & Stan Janssen & Frank Geerts, 2020. "Large Scale Smart Charging of Electric Vehicles in Practice," Energies, MDPI, vol. 13(2), pages 1-13, January.
    14. Philipp Kluschke & Fabian Neumann, 2019. "Interaction of a Hydrogen Refueling Station Network for Heavy-Duty Vehicles and the Power System in Germany for 2050," Papers 1908.10119, arXiv.org.
    15. Chen, Rongkai & Fan, Ruguo & Wang, Dongxue & Yao, Qianyi, 2023. "Effects of multiple incentives on electric vehicle charging infrastructure deployment in China: An evolutionary analysis in complex network," Energy, Elsevier, vol. 264(C).
    16. Helmus, Jurjen R. & Lees, Michael H. & van den Hoed, Robert, 2022. "A validated agent-based model for stress testing charging infrastructure utilization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 237-262.
    17. Xin Wang & Jinfeng Wang & Chunqiu Xu & Ke Zhang & Guo Li, 2023. "Electric Vehicle Charging Infrastructure Policy Analysis in China: A Framework of Policy Instrumentation and Industrial Chain," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    18. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    2. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    3. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    4. Chengxiang Zhuge & Chunfu Shao & Xia Li, 2019. "Empirical Analysis of Parking Behaviour of Conventional and Electric Vehicles for Parking Modelling: A Case Study of Beijing, China," Energies, MDPI, vol. 12(16), pages 1-21, August.
    5. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    6. Sutton, Katrina & Hardman, Scott & Tal, Gil, 2022. "Strategies to Reduce Congestion and Increase Access to Electric Vehicle Charging Stations at Workplaces," Institute of Transportation Studies, Working Paper Series qt2345r48k, Institute of Transportation Studies, UC Davis.
    7. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2017. "When do you charge your electric vehicle? A stated adaptation approach," Energy Policy, Elsevier, vol. 108(C), pages 565-573.
    8. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    9. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    10. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    11. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    12. Simona Bigerna & Silvia Micheli, 2018. "Attitudes Toward Electric Vehicles: The Case of Perugia Using a Fuzzy Set Analysis," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    13. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    14. Cláudia A. Soares Machado & Harmi Takiya & Charles Lincoln Kenji Yamamura & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2020. "Placement of Infrastructure for Urban Electromobility: A Sustainable Approach," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    15. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    16. Chen, Yu & Lin, Boqiang, 2022. "Are consumers in China’s major cities happy with charging infrastructure for electric vehicles?," Applied Energy, Elsevier, vol. 327(C).
    17. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    18. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    19. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    20. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:121:y:2018:i:c:p:35-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.