IDEAS home Printed from
   My bibliography  Save this article

Predicting intention to adopt solar technology in Canada: The role of knowledge, public engagement, and visibility


  • Parkins, John R.
  • Rollins, Curtis
  • Anders, Sven
  • Comeau, Louise


Solar power (i.e., solar photovoltaic) accounts for about 0.3% of total electricity production in Canada. To enhance this contribution to energy supply from solar power, financial incentives and technological breakthroughs alone may not guarantee change. Drawing on a national survey of 2065 Canadian residents, we identify the determinants of technology adoption intention with the exemplary case of rooftop solar. Using a combination of latent and observed variables within a non-linear structural equation model, our analysis quantifies how a set of individual and community level factors affect adoption intention. Analysis reveals that the visibility of solar technology has a particularly strong effect on intention, lending support to social learning and social network theories of diffusion of innovation. Our findings also show that the perceived knowledge of energy systems and being publicly engaged in energy issues significantly increases adoption intention. These conclusions encourage policy options that enhance public engagement and the visibility of solar technology within neighborhoods and communities.

Suggested Citation

  • Parkins, John R. & Rollins, Curtis & Anders, Sven & Comeau, Louise, 2018. "Predicting intention to adopt solar technology in Canada: The role of knowledge, public engagement, and visibility," Energy Policy, Elsevier, vol. 114(C), pages 114-122.
  • Handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:114-122
    DOI: 10.1016/j.enpol.2017.11.050

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fiona Gibson & Michael Burton, 2014. "Salt or Sludge? Exploring Preferences for Potable Water Sources," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 453-476, March.
    2. Arkesteijn, Karlijn & Oerlemans, Leon, 2005. "The early adoption of green power by Dutch households: An empirical exploration of factors influencing the early adoption of green electricity for domestic purposes," Energy Policy, Elsevier, vol. 33(2), pages 183-196, January.
    3. Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
    4. Gadenne, David & Sharma, Bishnu & Kerr, Don & Smith, Tim, 2011. "The influence of consumers' environmental beliefs and attitudes on energy saving behaviours," Energy Policy, Elsevier, vol. 39(12), pages 7684-7694.
    5. Chen, Kee Kuo, 2014. "Assessing the effects of customer innovativeness, environmental value and ecological lifestyles on residential solar power systems install intention," Energy Policy, Elsevier, vol. 67(C), pages 951-961.
    6. Simpson, Genevieve & Clifton, Julian, 2015. "The emperor and the cowboys: The role of government policy and industry in the adoption of domestic solar microgeneration systems," Energy Policy, Elsevier, vol. 81(C), pages 141-151.
    7. Train, Kenneth E & McFadden, Daniel L & Goett, Andrew A, 1987. "Consumer Attitudes and Voluntary Rate Schedules for Public Utilities," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 383-391, August.
    8. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    9. Labay, Duncan G & Kinnear, Thomas C, 1981. "Exploring the Consumer Decision Process in the Adoption of Solar Energy Systems," Journal of Consumer Research, Oxford University Press, vol. 8(3), pages 271-278, December.
    10. Andrew Daly & Stephane Hess & Bhanu Patruni & Dimitris Potoglou & Charlene Rohr, 2012. "Using ordered attitudinal indicators in a latent variable choice model: a study of the impact of security on rail travel behaviour," Transportation, Springer, vol. 39(2), pages 267-297, March.
    11. Fiona Gibson & Michael Burton, 2014. "Erratum to: Salt or Sludge? Exploring Preferences for Potable Water Sources," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 477-477, March.
    12. Sven Müller & Johannes Rode, 2013. "The adoption of photovoltaic systems in Wiesbaden, Germany," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(5), pages 519-535, July.
    13. Horrace, William C. & Oaxaca, Ronald L., 2006. "Results on the bias and inconsistency of ordinary least squares for the linear probability model," Economics Letters, Elsevier, vol. 90(3), pages 321-327, March.
    14. Braito, Michael & Flint, Courtney & Muhar, Andreas & Penker, Marianne & Vogel, Stefan, 2017. "Individual and collective socio-psychological patterns of photovoltaic investment under diverging policy regimes of Austria and Italy," Energy Policy, Elsevier, vol. 109(C), pages 141-153.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Evangelia Karasmanaki & Spyridon Galatsidas & Georgios Tsantopoulos, 2019. "An Investigation of Factors Affecting the Willingness to Invest in Renewables among Environmental Students: A Logistic Regression Approach," Sustainability, MDPI, Open Access Journal, vol. 11(18), pages 1-18, September.
    2. Fang Xu & Meng Tian & Jie Yang & Guohu Xu, 2020. "Does Environmental Inspection Led by the Central Government Improve the Air Quality in China? The Moderating Role of Public Engagement," Sustainability, MDPI, Open Access Journal, vol. 12(8), pages 1-27, April.
    3. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2019. "Public perceptions and acceptance of nuclear energy in China: The role of public knowledge, perceived benefit, perceived risk and public engagement," Energy Policy, Elsevier, vol. 126(C), pages 352-360.
    4. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Peng Jing & Hao Huang & Bin Ran & Fengping Zhan & Yuji Shi, 2019. "Exploring the Factors Affecting Mode Choice Intention of Autonomous Vehicle Based on an Extended Theory of Planned Behavior—A Case Study in China," Sustainability, MDPI, Open Access Journal, vol. 11(4), pages 1-20, February.
    6. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, Open Access Journal, vol. 12(8), pages 1-29, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:114-122. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.