IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v68y2017is1p81-88.html
   My bibliography  Save this article

The impact of energy prices on product innovation: Evidence from the UK refrigerator market

Author

Listed:
  • Cohen, François
  • Glachant, Matthieu
  • Söderberg, Magnus

Abstract

This paper uses product-level data from the UK refrigerator market to evaluate the impact of electricity prices on product innovation. Our best estimate is that a 10% increase in the electricity price reduces the average energy consumption of commercialized refrigerator models by 2%. A large share of this reduction is explained by a reduction of freezing space. We also show that the exit of energy-inefficient products contributes more to energy reduction than the launch of new energy-efficient models. These findings suggest that innovation – the development of better technologies embodied in new products – does not respond strongly to energy price variations.

Suggested Citation

  • Cohen, François & Glachant, Matthieu & Söderberg, Magnus, 2017. "The impact of energy prices on product innovation: Evidence from the UK refrigerator market," Energy Economics, Elsevier, vol. 68(S1), pages 81-88.
  • Handle: RePEc:eee:eneeco:v:68:y:2017:i:s1:p:81-88
    DOI: 10.1016/j.eneco.2017.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317303614
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    2. Joseph M. Crabb & Daniel K.N. Johnson, 2010. "Fueling Innovation: The Impact of Oil Prices and CAFE Standards on Energy-Efficient Automotive Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 199-216.
    3. repec:adr:anecst:y:1994:i:34 is not listed on IDEAS
    4. Jerry Hausman & Gregory Leonard & J. Douglas Zona, 1994. "Competitive Analysis with Differentiated Products," Annals of Economics and Statistics, GENES, issue 34, pages 143-157.
    5. repec:adr:anecst:y:1994:i:34:p:06 is not listed on IDEAS
    6. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    7. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
    8. Noailly, Joëlle, 2012. "Improving the energy efficiency of buildings: The impact of environmental policy on technological innovation," Energy Economics, Elsevier, vol. 34(3), pages 795-806.
    9. Diaz Arias, Adriana & van Beers, Cees, 2013. "Energy subsidies, structure of electricity prices and technological change of energy use," Energy Economics, Elsevier, vol. 40(C), pages 495-502.
    10. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    11. repec:fth:harver:1473 is not listed on IDEAS
    12. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    13. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    14. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 941-975.
    15. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74, pages 132-132.
    16. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    17. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    18. Cohen, François & Glachant, Matthieu & Söderberg, Magnus, 2017. "Consumer myopia, imperfect competition and the energy efficiency gap: Evidence from the UK refrigerator market," European Economic Review, Elsevier, vol. 93(C), pages 1-23.
    19. Panzone, Luca A., 2013. "Saving money vs investing money: Do energy ratings influence consumer demand for energy efficient goods?," Energy Economics, Elsevier, vol. 38(C), pages 51-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François Cohen; Giulia Valacchi, 2020. "The Heterogeneous Impact of Coal Prices on the Location of Cleaner and Dirtier Steel Plants," CIES Research Paper series 65-2020, Centre for International Environmental Studies, The Graduate Institute.
    2. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    3. Francois Cohen & Giulia Valacchi, 2017. "Do firms innovate if they can relocate? Evidence from te steel industry," CIES Research Paper series 55-2017, Centre for International Environmental Studies, The Graduate Institute.
    4. Francois Cohen & Giulia Valacchi, 2017. "The Heterogeneous Impact of Coal Prices on the Location of Dirty and Clean Steel Plants," CIES Research Paper series 55-2017, Centre for International Environmental Studies, The Graduate Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    2. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    3. Marius Ley, Tobias Stucki, and Martin Woerter, 2016. "The Impact of Energy Prices on Green Innovation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    5. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    6. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    7. Takahiko Kiso, 2019. "Environmental Policy and Induced Technological Change: Evidence from Automobile Fuel Economy Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 785-810, October.
    8. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    9. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    10. Antung Anthony Liu & Hiroaki Yamagami, 2018. "Environmental Policy in the Presence of Induced Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 279-299, September.
    11. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    12. Jürgen Kruse & Heike Wetzel, 2016. "Innovation in Clean Coal Technologies: Empirical Evidence from Firm-Level Patent Data," MAGKS Papers on Economics 201615, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    13. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    14. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    15. Grazia Cecere & Sascha Rexhäuser & Patrick Schulte, 2019. "From less promising to green? Technological opportunities and their role in (green) ICT innovation," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(1), pages 45-63, January.
    16. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    17. François Cohen; Giulia Valacchi, 2020. "The Heterogeneous Impact of Coal Prices on the Location of Cleaner and Dirtier Steel Plants," CIES Research Paper series 65-2020, Centre for International Environmental Studies, The Graduate Institute.
    18. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    19. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    20. Barbieri, Nicolò, 2016. "Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 222-234.

    More about this item

    Keywords

    Induced innovation; Energy efficiency; Electricity prices; Multiple imputations; Product entry and exit;
    All these keywords.

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • L68 - Industrial Organization - - Industry Studies: Manufacturing - - - Appliances; Furniture; Other Consumer Durables
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:68:y:2017:i:s1:p:81-88. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.