IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v46y2014icp10-19.html
   My bibliography  Save this article

Why market rules matter: Optimizing pumped hydroelectric storage when compensation rules differ

Author

Listed:
  • Paine, Nathan
  • Homans, Frances R.
  • Pollak, Melisa
  • Bielicki, Jeffrey M.
  • Wilson, Elizabeth J.

Abstract

Policies, markets, and technologies interact to create the modern electrical system. Integrating large amounts of electricity generated by variable renewable resources, such as from wind and sunlight, into electricity systems may require energy storage technologies to synchronize electricity production with electricity demand. Electricity markets compensate the performance of these energy storage technologies for the services they provide, and these markets are often operated by regional independent system operators (ISOs) that specify the market rules for this compensation. To examine how different ISO rules can affect the operation and profitability an energy storage technology, we develop a dynamic programming model of pumped hydroelectric storage (PHES) facility operation under the market rules from the Midcontinent ISO and ISO-New England. We present how differences in rules between these ISOs produced different operational strategies and profits, and how important they are for PHES profitability.

Suggested Citation

  • Paine, Nathan & Homans, Frances R. & Pollak, Melisa & Bielicki, Jeffrey M. & Wilson, Elizabeth J., 2014. "Why market rules matter: Optimizing pumped hydroelectric storage when compensation rules differ," Energy Economics, Elsevier, vol. 46(C), pages 10-19.
  • Handle: RePEc:eee:eneeco:v:46:y:2014:i:c:p:10-19
    DOI: 10.1016/j.eneco.2014.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    2. Deb, Rajat, 2000. "Operating Hydroelectric Plants and Pumped Storage Units in a Competitive Environment," The Electricity Journal, Elsevier, vol. 13(3), pages 24-32, April.
    3. Foley, A.M. & Ó Gallachóir, B.P. & McKeogh, E.J. & Milborrow, D. & Leahy, P.G., 2013. "Addressing the technical and market challenges to high wind power integration in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 692-703.
    4. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    5. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    6. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
    7. Hall, Peter J., 2008. "Energy storage: The route to liberation from the fossil fuel economy?," Energy Policy, Elsevier, vol. 36(12), pages 4363-4367, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez, Gonzalo E., 2020. "Operation of pumped storage hydropower plants through optimization for power systems," Energy, Elsevier, vol. 202(C).
    2. Kyungjin Yoo & Seth Blumsack, 2018. "Can capacity markets be designed by democracy?," Journal of Regulatory Economics, Springer, vol. 53(2), pages 127-151, April.
    3. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    4. Brian C. Murray & William H. Niver, 2020. "A 21st Century Low‐Carbon Transition in U.S. Electric Power: Extent, Contributing Factors, and Implications," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 412-438, May.
    5. Andrea Molocchi, 2023. "Valuing the social cost of carbon: Do economists really care about climate change?," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2023(2), pages 41-76.
    6. Kyungjin Yoo & Seth Blumsack, 2018. "The Political Complexity of Regional Electricity Policy Formation," Complexity, Hindawi, vol. 2018, pages 1-18, December.
    7. He, YongXiu & Liu, PeiLiang & Zhou, Li & Zhang, Yan & Liu, Yang, 2021. "Competitive model of pumped storage power plants participating in electricity spot Market——in case of China," Renewable Energy, Elsevier, vol. 173(C), pages 164-176.
    8. Bhattacharjee, Subhadeep & Nayak, Pabitra Kumar, 2019. "PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend," Renewable Energy, Elsevier, vol. 135(C), pages 288-302.
    9. Tabari, Mokhtar & Shaffer, Blake, 2020. "Paying for performance: The role of policy in energy storage deployment," Energy Economics, Elsevier, vol. 92(C).
    10. Melikoglu, Mehmet, 2017. "Pumped hydroelectric energy storage: Analysing global development and assessing potential applications in Turkey based on Vision 2023 hydroelectricity wind and solar energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 146-153.
    11. Bhandari, Vivek & Sun, Kaiyang & Homans, Frances, 2018. "The profitability of vehicle to grid for system participants - A case study from the Electricity Reliability Council of Texas," Energy, Elsevier, vol. 153(C), pages 278-286.
    12. Laureen Deman & Quentin Boucher & Sonia Djebali & Guillaume Guerard & C?dric Clastres, 2023. "Bidding strategy of storage hydropower plants in reserve markets," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2023(2), pages 77-101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    2. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    3. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    4. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    5. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    6. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    7. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    8. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
    9. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    10. Ruppert, Leopold & Schürhuber, Robert & List, Bernhard & Lechner, Alois & Bauer, Christian, 2017. "An analysis of different pumped storage schemes from a technological and economic perspective," Energy, Elsevier, vol. 141(C), pages 368-379.
    11. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    12. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    13. Rangarajan, Arvind & Foley, Sean & Trück, Stefan, 2023. "Assessing the impact of battery storage on Australian electricity markets," Energy Economics, Elsevier, vol. 120(C).
    14. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    15. Goteti, Naga Srujana & Hittinger, Eric & Sergi, Brian & Lima Azevedo, Inês, 2021. "How does new energy storage affect the operation and revenue of existing generation?," Applied Energy, Elsevier, vol. 285(C).
    16. Krishnan, Venkat & Das, Trishna, 2015. "Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures," Energy, Elsevier, vol. 81(C), pages 175-188.
    17. Hittinger, Eric & Lueken, Roger, 2015. "Is inexpensive natural gas hindering the grid energy storage industry?," Energy Policy, Elsevier, vol. 87(C), pages 140-152.
    18. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    19. Yuan, Meng & Sorknæs, Peter & Lund, Henrik & Liang, Yongtu, 2022. "The bidding strategies of large-scale battery storage in 100% renewable smart energy systems," Applied Energy, Elsevier, vol. 326(C).
    20. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.

    More about this item

    Keywords

    Energy storage; Electricity markets; Energy market rules; Reliability services; Pumped hydro; Independent system operator;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:46:y:2014:i:c:p:10-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.