IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v16y2009i2p216-234.html
   My bibliography  Save this article

The credit rating process and estimation of transition probabilities: A Bayesian approach

Author

Listed:
  • Stefanescu, Catalina
  • Tunaru, Radu
  • Turnbull, Stuart

Abstract

The Basel II Accord requires banks to establish rigorous statistical procedures for the estimation and validation of default and ratings transition probabilities. This raises great technical challenges when sufficient default data are not available, as is the case for low default portfolios. We develop a new model that describes the typical internal credit rating process used by banks. The model captures patterns of obligor heterogeneity and ratings migration dependence through unobserved systematic macroeconomic shocks. We describe a Bayesian hierarchical framework for model calibration from historical rating transition data, and show how the predictive performance of the model can be assessed, even with sparse event data. Finally, we analyze a rating transition data set from Standard and Poor's during 1981-2007. Our results have implications for the current Basel II policy debate on the magnitude of default probabilities assigned to low risk assets.

Suggested Citation

  • Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.
  • Handle: RePEc:eee:empfin:v:16:y:2009:i:2:p:216-234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(08)00084-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Gagliardini, 2005. "Stochastic Migration Models with Application to Corporate Risk," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(2), pages 188-226.
    2. Frydman, Halina & Schuermann, Til, 2008. "Credit rating dynamics and Markov mixture models," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1062-1075, June.
    3. Jafry, Yusuf & Schuermann, Til, 2004. "Measurement, estimation and comparison of credit migration matrices," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2603-2639, November.
    4. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    5. Hanson, Samuel & Schuermann, Til, 2006. "Confidence intervals for probabilities of default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2281-2301, August.
    6. Altman, Edward I. & Rijken, Herbert A., 2004. "How rating agencies achieve rating stability," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2679-2714, November.
    7. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    8. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    9. Carey, Mark & Hrycay, Mark, 2001. "Parameterizing credit risk models with rating data," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 197-270, January.
    10. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    11. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    12. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    13. Farnsworth, Heber & Li, Tao, 2007. "The Dynamics of Credit Spreads and Ratings Migrations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(03), pages 595-620, September.
    14. Hanson, Samuel G. & Pesaran, M. Hashem & Schuermann, Til, 2008. "Firm heterogeneity and credit risk diversification," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 583-612, September.
    15. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    16. Christensen, Jens H.E. & Hansen, Ernst & Lando, David, 2004. "Confidence sets for continuous-time rating transition probabilities," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2575-2602, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Migration Analysis; Conditioning Transition Matrices on the Stage of the Business Cycle," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 20(2), pages 151-166, May.
    2. Voß, Sebastian & Weißbach, Rafael, 2014. "A score-test on measurement errors in rating transition times," Journal of Econometrics, Elsevier, vol. 180(1), pages 16-29.
    3. Leow, Mindy & Crook, Jonathan, 2014. "Intensity models and transition probabilities for credit card loan delinquencies," European Journal of Operational Research, Elsevier, vol. 236(2), pages 685-694.
    4. Chateau, Jean-Pierre D., 2011. "Contribution à la réglementation de Bâle-3 : de la consistance interne du continuum du crédit commercial en marquant à la « valeur de modèle » le risque de crédit des engagements de crédit," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(4), pages 445-479, décembre.
    5. Dimitrakopoulos, Stefanos & Dey, Dipak K., 2017. "Discrete-response state space models with conditional heteroscedasticity: An application to forecasting the federal funds rate target," Economics Letters, Elsevier, vol. 154(C), pages 20-23.
    6. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    7. Caporale, Guglielmo Maria & Matousek, Roman & Stewart, Chris, 2012. "Ratings assignments: Lessons from international banks," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1593-1606.
    8. D. V. Boreiko & Y. M. Kaniovski & G. Ch. Pflug, 2017. "Numerical Modeling of Dependent Credit Rating Transitions with Asynchronously Moving Industries," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 499-516, March.
    9. repec:kap:iaecre:v:20:y:2014:i:2:p:151-166 is not listed on IDEAS
    10. Hwang, Ruey-Ching & Chung, Huimin & Chu, C.K., 2010. "Predicting issuer credit ratings using a semiparametric method," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 120-137, January.
    11. Chateau, John-Peter D., 2009. "Marking-to-model credit and operational risks of loan commitments: A Basel-2 advanced internal ratings-based approach," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 260-270, December.
    12. Miroslav Plasil & Tomas Konecny & Jakub Seidler & Petr Hlavac, 2015. "In the Quest of Measuring the Financial Cycle," Working Papers 2015/05, Czech National Bank, Research Department.
    13. Hwang, Ruey-Ching, 2012. "A varying-coefficient default model," International Journal of Forecasting, Elsevier, vol. 28(3), pages 675-688.
    14. Mariusz Górajski & Dobromił Serwa & Zuzanna Wośko, 2016. "Measuring expected time to default under stress conditions for corporate loans," NBP Working Papers 237, Narodowy Bank Polski, Economic Research Department.
    15. Chan, Ngai Hang & Wong, Hoi Ying & Zhao, Jing, 2012. "Structural model of credit migration," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3477-3490.
    16. D. V. Boreiko & Y. M. Kaniovski & G. Ch. Pflug, 2016. "Modeling dependent credit rating transitions: a comparison of coupling schemes and empirical evidence," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 989-1007, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:16:y:2009:i:2:p:216-234. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.