IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v36y2012i1p78-89.html
   My bibliography  Save this article

Credit rating dynamics in the presence of unknown structural breaks

Author

Listed:
  • Xing, Haipeng
  • Sun, Ning
  • Chen, Ying

Abstract

In many credit risk and pricing applications, credit transition matrix is modeled by a constant transition probability or generator matrix for Markov processes. Based on empirical evidence, we model rating transition processes as piecewise homogeneous Markov chains with unobserved structural breaks. The proposed model provides explicit formulas for the posterior distribution of the time-varying rating transition generator matrices, the probability of structural break at each period and prediction of transition matrices in the presence of possible structural breaks. Estimating the model by credit rating history, we show that the structural break in rating transitions can be captured by the proposed model. We also show that structural breaks in rating dynamics are different for different industries. We then compare the prediction performance of the proposed and time-homogeneous Markov chain models.

Suggested Citation

  • Xing, Haipeng & Sun, Ning & Chen, Ying, 2012. "Credit rating dynamics in the presence of unknown structural breaks," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 78-89.
  • Handle: RePEc:eee:jbfina:v:36:y:2012:i:1:p:78-89
    DOI: 10.1016/j.jbankfin.2011.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426611001944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2011.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsaig, Yaakov & Levy, Amnon & Wang, Yashan, 2011. "Analyzing the impact of credit migration in a portfolio setting," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3145-3157.
    2. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 3-98, Wharton School Rodney L. White Center for Financial Research.
    3. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    4. Giacomo Giampieri & Mark Davis & Martin Crowder, 2005. "Analysis of default data using hidden Markov models," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 27-34.
    5. Frydman, Halina & Schuermann, Til, 2008. "Credit rating dynamics and Markov mixture models," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1062-1075, June.
    6. Jafry, Yusuf & Schuermann, Til, 2004. "Measurement, estimation and comparison of credit migration matrices," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2603-2639, November.
    7. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    8. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    9. Liao, Hsien-Hsing & Chen, Tsung-Kang & Lu, Chia-Wu, 2009. "Bank credit risk and structural credit models: Agency and information asymmetry perspectives," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1520-1530, August.
    10. Gordy, Michael B. & Howells, Bradley, 2006. "Procyclicality in Basel II: Can we treat the disease without killing the patient?," Journal of Financial Intermediation, Elsevier, vol. 15(3), pages 395-417, July.
    11. Altman, Edward I. & Rijken, Herbert A., 2004. "How rating agencies achieve rating stability," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2679-2714, November.
    12. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    13. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    14. Treacy, William F. & Carey, Mark, 2000. "Credit risk rating systems at large US banks," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 167-201, January.
    15. repec:bla:jfinan:v:53:y:1998:i:4:p:1389-1413 is not listed on IDEAS
    16. Egloff, Daniel & Leippold, Markus & Vanini, Paolo, 2007. "A simple model of credit contagion," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2475-2492, August.
    17. Altman, Edward I., 1998. "The importance and subtlety of credit rating migration," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1231-1247, October.
    18. repec:fth:pennfi:67 is not listed on IDEAS
    19. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    20. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 03-98, Wharton School Rodney L. White Center for Financial Research.
    21. Christensen, Jens H.E. & Hansen, Ernst & Lando, David, 2004. "Confidence sets for continuous-time rating transition probabilities," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2575-2602, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chateau, Jean-Pierre D., 2011. "Contribution à la réglementation de Bâle-3 : de la consistance interne du continuum du crédit commercial en marquant à la « valeur de modèle » le risque de crédit des engagements de crédit," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(4), pages 445-479, décembre.
    2. T. Gärtner & S. Kaniovski & Y. Kaniovski, 2021. "Numerical estimates of risk factors contingent on credit ratings," Computational Management Science, Springer, vol. 18(4), pages 563-589, October.
    3. D. V. Boreiko & Y. M. Kaniovski & G. Ch. Pflug, 2016. "Modeling dependent credit rating transitions: a comparison of coupling schemes and empirical evidence," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 989-1007, December.
    4. Guglielmo D'Amico & Filippo Petroni & Philippe Regnault & Stefania Scocchera & Loriano Storchi, 2019. "A copula based Markov Reward approach to the credit spread in European Union," Papers 1902.00691, arXiv.org.
    5. Wai Choi Lee & Jianfu Shen & Tsun Se Cheong & Michal Wojewodzki, 2021. "Detecting conflicts of interest in credit rating changes: a distribution dynamics approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-23, December.
    6. D. V. Boreiko & Y. M. Kaniovski & G. Ch. Pflug, 2017. "Numerical Modeling of Dependent Credit Rating Transitions with Asynchronously Moving Industries," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 499-516, March.
    7. Dmitri Boreiko & Serguei Kaniovski & Yuri Kaniovski & Georg Ch. Pflug, 2018. "Business Cycles and Conditional Credit-Rating Migration Matrices," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-19, December.
    8. Haipeng Xing & Yang Yu, 2018. "Firm’s Credit Risk in the Presence of Market Structural Breaks," Risks, MDPI, vol. 6(4), pages 1-16, December.
    9. Kun Liang & Chen Zhang & Cuiqing Jiang, 2022. "Analyzing default risk among P2P platforms based on the LAS-STACK method by considering multidimensional signals under specific economic contexts," Electronic Commerce Research, Springer, vol. 22(1), pages 77-111, March.
    10. Haipeng Xing & Ying Chen, 2018. "Dependence of Structural Breaks in Rating Transition Dynamics on Economic and Market Variations," Review of Economics & Finance, Better Advances Press, Canada, vol. 11, pages 1-18, February.
    11. Lu Shaochuan, 2020. "Bayesian multiple changepoints detection for Markov jump processes," Computational Statistics, Springer, vol. 35(3), pages 1501-1523, September.
    12. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    13. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    2. Hanson, Samuel & Schuermann, Til, 2006. "Confidence intervals for probabilities of default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2281-2301, August.
    3. Hill, Paula & Brooks, Robert & Faff, Robert, 2010. "Variations in sovereign credit quality assessments across rating agencies," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1327-1343, June.
    4. Tsaig, Yaakov & Levy, Amnon & Wang, Yashan, 2011. "Analyzing the impact of credit migration in a portfolio setting," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3145-3157.
    5. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    6. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    7. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    8. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "On sovereign credit migration: A study of alternative estimators and rating dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3448-3469, April.
    9. Michael Kalkbrener & Natalie Packham, 2024. "A Markov approach to credit rating migration conditional on economic states," Papers 2403.14868, arXiv.org.
    10. Til Schuermann & Yusuf Jafry, 2003. "Measurement and Estimation of Credit Migration Matrices," Center for Financial Institutions Working Papers 03-08, Wharton School Center for Financial Institutions, University of Pennsylvania.
    11. Kim, Yoonseong & Sohn, So Young, 2008. "Random effects model for credit rating transitions," European Journal of Operational Research, Elsevier, vol. 184(2), pages 561-573, January.
    12. Frydman, Halina & Schuermann, Til, 2008. "Credit rating dynamics and Markov mixture models," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1062-1075, June.
    13. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    14. Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.
    15. Kadam, Ashay & Lenk, Peter, 2008. "Bayesian inference for issuer heterogeneity in credit ratings migration," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2267-2274, October.
    16. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    17. Areski Cousin & J'er^ome Lelong & Tom Picard, 2021. "Rating transitions forecasting: a filtering approach," Papers 2109.10567, arXiv.org, revised Jun 2023.
    18. Varotto, Simone, 2012. "Stress testing credit risk: The Great Depression scenario," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3133-3149.
    19. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.
    20. Jafry, Yusuf & Schuermann, Til, 2004. "Measurement, estimation and comparison of credit migration matrices," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2603-2639, November.

    More about this item

    Keywords

    Credit risk; Hidden Markov model; Stochastic structural break;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:36:y:2012:i:1:p:78-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.