IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i2p484-495.html
   My bibliography  Save this article

Frequency competition among airlines on coordinated airports network

Author

Listed:
  • Wang, Chun-Han
  • Zhang, Wenzhu
  • Dai, Yue
  • Lee, Yu-Ching

Abstract

Frequency competition is critical for a full-service airline in gaining market share, and adopting a proper strategy can improve an airline’s profits. This study proposes a new equilibrium programming model with flow balance to address frequency competition on airports network with time slot constraints. We first show that a pure-strategy Nash equilibrium may not always exist, and thus forming a pure strategy profile in frequency competition among airlines may naturally lead to deviation from current frequency. Therefore, we formulate the problem as a programming model with a mixed-strategy Nash equilibrium. To avoid shocks from dramatic frequency changes across the network, airlines tend to fine-tune frequencies on select segments during each adjustment. We propose a procedure to generate a computationally tractable amount of representative strategies from a finite set of feasible strategies to demonstrate mixed-strategy Nash equilibrium. We conduct an empirical analysis using an example in which industry profitability increased by as much as 7.89%. We then extend the model to formulate frequency competition among metal-neutral alliances. The results show that forming metal-neutral alliances can improve total industry profits by 10.59%. In particular, a sensitivity analysis with real data on the tolerance of flow imbalance demonstrates that deducting the potential costs due to the relaxation of flow balance between congested airports may earn additional total industry profits in a frequency competition.

Suggested Citation

  • Wang, Chun-Han & Zhang, Wenzhu & Dai, Yue & Lee, Yu-Ching, 2022. "Frequency competition among airlines on coordinated airports network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 484-495.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:484-495
    DOI: 10.1016/j.ejor.2021.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre J. Dejax & Teodor Gabriel Crainic, 1987. "Survey Paper---A Review of Empty Flows and Fleet Management Models in Freight Transportation," Transportation Science, INFORMS, vol. 21(4), pages 227-248, November.
    2. Schipper, Youdi & Nijkamp, Peter & Rietveld, Piet, 2007. "Deregulation and welfare in airline markets: An analysis of frequency equilibria," European Journal of Operational Research, Elsevier, vol. 178(1), pages 194-206, April.
    3. Vikrant Vaze & Cynthia Barnhart, 2012. "Modeling Airline Frequency Competition for Airport Congestion Mitigation," Transportation Science, INFORMS, vol. 46(4), pages 512-535, November.
    4. Wen, Yuh-Horng & Hsu, Chaug-Ing, 2006. "Interactive multiobjective programming in airline network design for international airline code-share alliance," European Journal of Operational Research, Elsevier, vol. 174(1), pages 404-426, October.
    5. Adler, Nicole, 2001. "Competition in a deregulated air transportation market," European Journal of Operational Research, Elsevier, vol. 129(2), pages 337-345, March.
    6. Aguirregabiria, Victor & Ho, Chun-Yu, 2012. "A dynamic oligopoly game of the US airline industry: Estimation and policy experiments," Journal of Econometrics, Elsevier, vol. 168(1), pages 156-173.
    7. Narasimhan, Chakravarthi, 1988. "Competitive Promotional Strategies," The Journal of Business, University of Chicago Press, vol. 61(4), pages 427-449, October.
    8. Wilma W. Suen, 2005. "Non-Cooperation — The Dark Side of Strategic Alliances," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59657-3.
    9. Wei, Wenbin & Hansen, Mark, 2007. "Airlines' competition in aircraft size and service frequency in duopoly markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 409-424, July.
    10. Hsu, Chaug-Ing & Wen, Yuh-Horng, 2003. "Determining flight frequencies on an airline network with demand-supply interactions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(6), pages 417-441, November.
    11. Hansen, Mark, 1990. "Airline competition in a hub-dominated environment: An application of noncooperative game theory," Transportation Research Part B: Methodological, Elsevier, vol. 24(1), pages 27-43, February.
    12. Vikrant Vaze & Cynthia Barnhart, 2015. "The Price of Airline Frequency Competition," Springer Series in Reliability Engineering, in: Kjell Hausken & Jun Zhuang (ed.), Game Theoretic Analysis of Congestion, Safety and Security, edition 127, pages 173-217, Springer.
    13. Gregory Dobson & Phillip J. Lederer, 1993. "Airline Scheduling and Routing in a Hub-and-Spoke System," Transportation Science, INFORMS, vol. 27(3), pages 281-297, August.
    14. Ribeiro, Nuno Antunes & Jacquillat, Alexandre & Antunes, António Pais & Odoni, Amedeo R. & Pita, João P., 2018. "An optimization approach for airport slot allocation under IATA guidelines," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 132-156.
    15. Konstantinos G. Zografos & Michael A. Madas & Konstantinos N. Androutsopoulos, 2017. "Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs," Journal of Scheduling, Springer, vol. 20(1), pages 3-24, February.
    16. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    17. Wilma W. Suen, 2005. "The Dark Side of Strategic Alliances," Palgrave Macmillan Books, in: Non-Cooperation — The Dark Side of Strategic Alliances, chapter 1, pages 1-10, Palgrave Macmillan.
    18. Alexandre Jacquillat & Amedeo R. Odoni, 2015. "An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation," Operations Research, INFORMS, vol. 63(6), pages 1390-1410, December.
    19. Grauberger, W. & Kimms, A., 2014. "Computing approximate Nash equilibria in general network revenue management games," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1008-1020.
    20. Goh, Kevin & Uncles, Mark, 2003. "The benefits of airline global alliances: an empirical assessment of the perceptions of business travelers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 479-497, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Gautam & Goodchild, Anne & Hansen, Mark, 2011. "A competitive, charter air-service planning model for student athlete travel," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 128-149, January.
    2. Vikrant Vaze & Cynthia Barnhart, 2012. "Modeling Airline Frequency Competition for Airport Congestion Mitigation," Transportation Science, INFORMS, vol. 46(4), pages 512-535, November.
    3. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    4. Hansen, Mark & Liu, Yi, 2015. "Airline competition and market frequency: A comparison of the s-curve and schedule delay models," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 301-317.
    5. Saraswati, Batari & Hanaoka, Shinya, 2014. "Airport–airline cooperation under commercial revenue sharing agreements: A network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 17-33.
    6. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Fu, Xiaowen, 2010. "Optimal route allocation in a liberalizing airline market," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 886-902, August.
    7. Androutsopoulos, Konstantinos N. & Madas, Michael A., 2019. "Being fair or efficient? A fairness-driven modeling extension to the strategic airport slot scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 37-60.
    8. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2021. "Optimising airport slot allocation considering flight-scheduling flexibility and total airport capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 50-87.
    9. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2023. "Incorporating slot valuation in making airport slot scheduling decisions," European Journal of Operational Research, Elsevier, vol. 308(1), pages 436-454.
    10. Wei, Wenbin & Hansen, Mark, 2006. "An aggregate demand model for air passenger traffic in the hub-and-spoke network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 841-851, December.
    11. Lay Eng Teoh & Hooi Ling Khoo, 2016. "Fleet Planning Decision-Making: Two-Stage Optimization with Slot Purchase," Journal of Optimization, Hindawi, vol. 2016, pages 1-12, June.
    12. Cavusoglu, Sabriye Sera & Macário, Rosário, 2021. "Minimum delay or maximum efficiency? Rising productivity of available capacity at airports: Review of current practice and future needs," Journal of Air Transport Management, Elsevier, vol. 90(C).
    13. Kuangnen Cheng & Hui-Ping Chen & Jason Lee, 2015. "Competition behavior in service frequency for U.S. airlines," Service Business, Springer;Pan-Pacific Business Association, vol. 9(1), pages 1-16, March.
    14. Takebayashi, Mikio & Kanafani, Adib, 2005. "Network Competition in Air Transportation Markets: Bi-Level Approach," Research in Transportation Economics, Elsevier, vol. 13(1), pages 101-119, January.
    15. Till Kösters & Marlena Meier & Gernot Sieg, 2023. "Effects of the use-it-or-lose-it rule on airline strategy and climate," Working Papers 36, Institute of Transport Economics, University of Muenster.
    16. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    17. Tu, Ningwen & Li, Zhi-Chun & Fu, Xiaowen & Lei, Zheng, 2020. "Airline network competition in inter-continental market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    18. Nicole Adler, 2005. "Hub-Spoke Network Choice Under Competition with an Application to Western Europe," Transportation Science, INFORMS, vol. 39(1), pages 58-72, February.
    19. Shiao, Guo-Chou & Hwang, Cherng-Chwan, 2013. "Analyzing competition of international air cargo carriers in the Asian general air cargo markets," Transport Policy, Elsevier, vol. 27(C), pages 164-170.
    20. Androutsopoulos, Konstantinos N. & Manousakis, Eleftherios G. & Madas, Michael A., 2020. "Modeling and solving a bi-objective airport slot scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 135-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:484-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.