IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v293y2021i1p149-166.html
   My bibliography  Save this article

Joint optimization of container slot planning and truck scheduling for tandem quay cranes

Author

Listed:
  • Kong, Lingrui
  • Ji, Mingjun
  • Gao, Zhendi

Abstract

This paper examines the loading operations of a new type of quay crane, the tandem quay crane (TQC), which has been designed to increase the terminal productivity by lifting more containers simultaneously. Due to the special characteristics of the TQC, more than one truck is required to serve a tandem-lift of it, and the containers handled in a tandem-lift must be loaded into two neighboring rows in the same tier of the containership. Of particular importance in schedules at the terminal is to coordinate the truck scheduling and container stowage slot plan with the TQCs, which is a key challenge in practice. This paper is an attempt to tackle this issue by developing a mixed integer linear programming (MILP) model with an objective of minimizing the completion time of the loading operation under the full utilization of the TQC. Due to the complexity of the MILP model, we then propose a model to derive lower bounds of the problem, and a greedy randomized adaptive search procedure (GRASP) to solve the problem. Computational experiments are conducted with a variety of instances. The results derived by GRASP for solving small size problems are within 0.04% of the optimal results obtained by the Gurobi. For large scale instances, GRASP outperforms the Gurobi in terms of the solution quality and computation time. Additionally, on average results derived by GRASP are within 8.2% of the lower bound. Further experiments demonstrate the advantage of the integrated optimization of container slot planning and truck scheduling for TQCs.

Suggested Citation

  • Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2021. "Joint optimization of container slot planning and truck scheduling for tandem quay cranes," European Journal of Operational Research, Elsevier, vol. 293(1), pages 149-166.
  • Handle: RePEc:eee:ejores:v:293:y:2021:i:1:p:149-166
    DOI: 10.1016/j.ejor.2020.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720310158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    2. M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2020. "A GRASP algorithm for multi container loading problems with practical constraints," 4OR, Springer, vol. 18(1), pages 49-72, March.
    3. Iris, Çağatay & Christensen, Jonas & Pacino, Dario & Ropke, Stefan, 2018. "Flexible ship loading problem with transfer vehicle assignment and scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 113-134.
    4. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    5. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
    6. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    7. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    8. Korach, Aleksandra & Brouer, Berit Dangaard & Jensen, Rune Møller, 2020. "Matheuristics for slot planning of container vessel bays," European Journal of Operational Research, Elsevier, vol. 282(3), pages 873-885.
    9. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
    10. Omar Abou Kasm & Ali Diabat & T. C. E. Cheng, 2020. "The integrated berth allocation, quay crane assignment and scheduling problem: mathematical formulations and a case study," Annals of Operations Research, Springer, vol. 291(1), pages 435-461, August.
    11. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    12. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    13. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    14. Chao, Shih-Liang & Lin, Yu-Jr, 2011. "Evaluating advanced quay cranes in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 432-445, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah O’Connell & Marcus Martin Keane, 2021. "Development of a Framework for Activation of Aggregator Led Flexibility," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
    2. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    3. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
    4. Fazi, Stefano, 2019. "A decision-support framework for the stowage of maritime containers in inland shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 1-23.
    5. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    7. Jone R. Hansen & Kjetil Fagerholt & Magnus Stålhane & Jørgen G. Rakke, 2020. "An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships," Journal of Heuristics, Springer, vol. 26(6), pages 885-912, December.
    8. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    9. Chargui, Kaoutar & Zouadi, Tarik & El Fallahi, Abdellah & Reghioui, Mohamed & Aouam, Tarik, 2021. "Berth and quay crane allocation and scheduling with worker performance variability and yard truck deployment in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    10. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
    11. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    12. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
    13. Abou Kasm, Omar & Diabat, Ali & Bierlaire, Michel, 2021. "Vessel scheduling with pilotage and tugging considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    14. Korach, Aleksandra & Brouer, Berit Dangaard & Jensen, Rune Møller, 2020. "Matheuristics for slot planning of container vessel bays," European Journal of Operational Research, Elsevier, vol. 282(3), pages 873-885.
    15. Mao, Anjia & Yu, Tiantian & Ding, Zhaohao & Fang, Sidun & Guo, Jinran & Sheng, Qianqian, 2022. "Optimal scheduling for seaport integrated energy system considering flexible berth allocation," Applied Energy, Elsevier, vol. 308(C).
    16. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.
    17. Chaemin Lee & Mun Keong Lee & Jae Young Shin, 2020. "Lashing Force Prediction Model with Multimodal Deep Learning and AutoML for Stowage Planning Automation in Containerships," Logistics, MDPI, vol. 5(1), pages 1-15, December.
    18. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    19. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    20. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:293:y:2021:i:1:p:149-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.