IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v317y2024i3p841-857.html
   My bibliography  Save this article

Literature survey on the container stowage planning problem

Author

Listed:
  • van Twiller, Jaike
  • Sivertsen, Agnieszka
  • Pacino, Dario
  • Jensen, Rune Møller

Abstract

Container shipping drives the global economy and is an eco-friendly mode of transportation. A key objective is to maximize the utilization of vessels, which is challenging due to the NP-hardness of stowage planning. This article surveys the literature on the Container Stowage Planning Problem (CSPP). We introduce a classification scheme to analyze single-port and multi-port CSPPs, as well as the hierarchical decomposition of CSPPs into the master and slot planning problem. Our survey shows that the area has a relatively small number of publications and that it is hard to evaluate the industrial applicability of many of the proposed solution methods due to the oversimplification of problem formulations. To address this issue, we propose a research agenda with directions for future work, including establishing a representative problem definition and providing new benchmark instances where needed.

Suggested Citation

  • van Twiller, Jaike & Sivertsen, Agnieszka & Pacino, Dario & Jensen, Rune Møller, 2024. "Literature survey on the container stowage planning problem," European Journal of Operational Research, Elsevier, vol. 317(3), pages 841-857.
  • Handle: RePEc:eee:ejores:v:317:y:2024:i:3:p:841-857
    DOI: 10.1016/j.ejor.2023.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huiling Zhu & Mingjun Ji & Wenwen Guo, 2020. "Integer Linear Programming Models for the Containership Stowage Problem," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, October.
    2. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    3. Christensen, Jonas & Pacino, Dario, 2017. "A matheuristic for the Cargo Mix Problem with Block Stowage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 151-171.
    4. Consuelo Parreño-Torres & Ramon Alvarez-Valdes & Francisco Parreño, 2019. "Solution Strategies for a Multiport Container Ship Stowage Problem," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, May.
    5. Mordecai Avriel & Michal Penn & Naomi Shpirer & Smadar Witteboon, 1998. "Stowage planning for container ships to reduce the number of shifts," Annals of Operations Research, Springer, vol. 76(0), pages 55-71, January.
    6. Iris, Çağatay & Christensen, Jonas & Pacino, Dario & Ropke, Stefan, 2018. "Flexible ship loading problem with transfer vehicle assignment and scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 113-134.
    7. Chaemin Lee & Mun Keong Lee & Jae Young Shin, 2020. "Lashing Force Prediction Model with Multimodal Deep Learning and AutoML for Stowage Planning Automation in Containerships," Logistics, MDPI, vol. 5(1), pages 1-15, December.
    8. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
    9. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    10. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
    11. I D Wilson & P A Roach, 2000. "Container stowage planning: a methodology for generating computerised solutions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1248-1255, November.
    12. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    13. Sciomachen, Anna & Tanfani, Elena, 2007. "A 3D-BPP approach for optimising stowage plans and terminal productivity," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1433-1446, December.
    14. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
    15. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    16. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    17. Shih-Liang Chao & Pi-Hung Lin, 2021. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 71-93, March.
    18. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
    19. Ambrosino, Daniela & Sciomachen, Anna & Tanfani, Elena, 2004. "Stowing a containership: the master bay plan problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 81-99, February.
    20. Korach, Aleksandra & Brouer, Berit Dangaard & Jensen, Rune Møller, 2020. "Matheuristics for slot planning of container vessel bays," European Journal of Operational Research, Elsevier, vol. 282(3), pages 873-885.
    21. Anibal Tavares De Azevedo & Cassilda Maria Ribeiro & Galeno José De Sena & Antônio Augusto Chaves & Luis Leduíno Salles Neto & Antônio Carlos Moretti, 2014. "Solving the 3D container ship loading planning problem by representation by rules and meta-heuristics," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 6(3), pages 228-260.
    22. Hsien-Pin Hsu & Chia-Nan Wang & Hsin-Pin Fu & Thanh-Tuan Dang, 2021. "Joint Scheduling of Yard Crane, Yard Truck, and Quay Crane for Container Terminal Considering Vessel Stowage Plan: An Integrated Simulation-Based Optimization Approach," Mathematics, MDPI, vol. 9(18), pages 1-28, September.
    23. Franzkeit, Janna & Schwientek, Anne Kathrina & Jahn, Carlos, 2020. "Stowage planning for inland container vessels: A literature review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 247-280, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
    2. Fazi, Stefano, 2019. "A decision-support framework for the stowage of maritime containers in inland shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 1-23.
    3. Buddhi A. Weerasinghe & H. Niles Perera & Xiwen Bai, 2024. "Optimizing container terminal operations: a systematic review of operations research applications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 307-341, June.
    4. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
    5. Gao, Yinping & Zhen, Lu, 2024. "A decision framework for decomposed stowage planning for containers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    6. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2021. "Joint optimization of container slot planning and truck scheduling for tandem quay cranes," European Journal of Operational Research, Elsevier, vol. 293(1), pages 149-166.
    7. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    8. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
    9. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    10. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
    11. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    12. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
    13. Shih-Liang Chao & Pi-Hung Lin, 0. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 0, pages 1-23.
    14. Shih-Liang Chao & Pi-Hung Lin, 2021. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 71-93, March.
    15. Christensen, Jonas & Pacino, Dario, 2017. "A matheuristic for the Cargo Mix Problem with Block Stowage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 151-171.
    16. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    17. Huiling Zhu, 2022. "Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal Yard Operations," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    18. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    19. Korach, Aleksandra & Brouer, Berit Dangaard & Jensen, Rune Møller, 2020. "Matheuristics for slot planning of container vessel bays," European Journal of Operational Research, Elsevier, vol. 282(3), pages 873-885.
    20. Jone R. Hansen & Kjetil Fagerholt & Magnus Stålhane & Jørgen G. Rakke, 2020. "An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships," Journal of Heuristics, Springer, vol. 26(6), pages 885-912, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:317:y:2024:i:3:p:841-857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.