IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i1p242-249.html
   My bibliography  Save this article

Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts

Author

Listed:
  • Ding, Ding
  • Chou, Mabel C.

Abstract

We consider the stowage planning problem of a container ship, where the ship visits a series of ports sequentially and containers can only be accessed from the top of the stacks. At some ports, certain containers will be unloaded temporarily and will be loaded back later for various purposes. Such unproductive movements of containers are called shifts, which are both time and money consuming. Literature shows that binary linear programming formulation for such problems is impracticable for real life problems due to the large number of binary variables and constraints. Therefore, we develop a heuristic algorithm which can generate stowage plans with a reasonable number of shifts for such problems. The algorithm, verified by extensive computational experimentations, performs better than the Suspensory Heuristic Procedure (SH algorithm) proposed in Avriel et al. (1998), which, to the best of our knowledge, is one of the leading heuristic algorithms for such stowage planning problem.

Suggested Citation

  • Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:242-249
    DOI: 10.1016/j.ejor.2015.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715002660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    2. Sciomachen, Anna & Tanfani, Elena, 2007. "A 3D-BPP approach for optimising stowage plans and terminal productivity," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1433-1446, December.
    3. J-G Kang & Y-D Kim, 2002. "Stowage planning in maritime container transportation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(4), pages 415-426, April.
    4. Mordecai Avriel & Michal Penn & Naomi Shpirer & Smadar Witteboon, 1998. "Stowage planning for container ships to reduce the number of shifts," Annals of Operations Research, Springer, vol. 76(0), pages 55-71, January.
    5. I D Wilson & P A Roach, 2000. "Container stowage planning: a methodology for generating computerised solutions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1248-1255, November.
    6. Daniela Ambrosino & Davide Anghinolfi & Massimo Paolucci & Anna Sciomachen, 2009. "A new three-step heuristic for the Master Bay Plan Problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(1), pages 98-120, March.
    7. Ambrosino, Daniela & Sciomachen, Anna & Tanfani, Elena, 2004. "Stowing a containership: the master bay plan problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 81-99, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    2. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
    3. Christensen, Jonas & Pacino, Dario, 2017. "A matheuristic for the Cargo Mix Problem with Block Stowage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 151-171.
    4. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    5. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    6. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
    7. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
    8. van Twiller, Jaike & Sivertsen, Agnieszka & Pacino, Dario & Jensen, Rune Møller, 2024. "Literature survey on the container stowage planning problem," European Journal of Operational Research, Elsevier, vol. 317(3), pages 841-857.
    9. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    10. Fazi, Stefano, 2019. "A decision-support framework for the stowage of maritime containers in inland shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 1-23.
    11. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    12. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
    13. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    14. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
    15. Goerigk, Marc & Knust, Sigrid & Le, Xuan Thanh, 2016. "Robust storage loading problems with stacking and payload constraints," European Journal of Operational Research, Elsevier, vol. 253(1), pages 51-67.
    16. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    17. Huiling Zhu, 2022. "Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal Yard Operations," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    18. Franzkeit, Janna & Schwientek, Anne Kathrina & Jahn, Carlos, 2020. "Stowage planning for inland container vessels: A literature review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 247-280, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    19. Korach, Aleksandra & Brouer, Berit Dangaard & Jensen, Rune Møller, 2020. "Matheuristics for slot planning of container vessel bays," European Journal of Operational Research, Elsevier, vol. 282(3), pages 873-885.
    20. Gao, Yinping & Zhen, Lu, 2024. "A decision framework for decomposed stowage planning for containers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:242-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.