IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v123y2019icp200-220.html
   My bibliography  Save this article

A rolling horizon heuristic for the stochastic cargo mix problem

Author

Listed:
  • Christensen, Jonas
  • Erera, Alan
  • Pacino, Dario

Abstract

This paper presents the stochastic cargo-mix problem, which aims at analysing the cargo composition needed for a liner vessel to maximise its revenue on a given service. The unreliability with respect to the demand forecast is included by considering the cargo-flows as being stochastic instead of deterministic. We also take into account accepted bookings, draft, stability and capacity constraints. A compact formulation of the problem is shown to be too complex to solve industrially sized instances. Instead, a rolling horizon matheuristic is presented, and the computational results show that it can achieve high-quality results in reasonable time.

Suggested Citation

  • Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.
  • Handle: RePEc:eee:transe:v:123:y:2019:i:c:p:200-220
    DOI: 10.1016/j.tre.2018.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518305106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bredström, David & Rönnqvist, Mikael, 2006. "Supply Chain Optimization in Pulp Distribution using a Rolling Horizon Solution Approach," Discussion Papers 2006/17, Norwegian School of Economics, Department of Business and Management Science.
    2. Christensen, Jonas & Pacino, Dario, 2017. "A matheuristic for the Cargo Mix Problem with Block Stowage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 151-171.
    3. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
    4. Mordecai Avriel & Michal Penn & Naomi Shpirer & Smadar Witteboon, 1998. "Stowage planning for container ships to reduce the number of shifts," Annals of Operations Research, Springer, vol. 76(0), pages 55-71, January.
    5. Cheng-Min Feng & Chia-Hui Chang, 2008. "Optimal Slot Allocation in Intra-Asia Service for Liner Shipping Companies," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(3), pages 295-309, September.
    6. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    7. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    8. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
    9. I D Wilson & P A Roach, 2000. "Container stowage planning: a methodology for generating computerised solutions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1248-1255, November.
    10. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    11. Daniela Ambrosino & Davide Anghinolfi & Massimo Paolucci & Anna Sciomachen, 2009. "A new three-step heuristic for the Master Bay Plan Problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(1), pages 98-120, March.
    12. Ambrosino, Daniela & Sciomachen, Anna & Tanfani, Elena, 2004. "Stowing a containership: the master bay plan problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 81-99, February.
    13. J-G Kang & Y-D Kim, 2002. "Stowage planning in maritime container transportation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(4), pages 415-426, April.
    14. Berit D. Brouer & J. Fernando Alvarez & Christian E. M. Plum & David Pisinger & Mikkel M. Sigurd, 2014. "A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design," Transportation Science, INFORMS, vol. 48(2), pages 281-312, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Gongyuan & Ning, Jia & Liu, Xiaobo & Nie, Yu (Marco), 2022. "Train platforming and rescheduling with flexible interlocking mechanisms: An aggregate approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    2. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
    3. Yang, Ruina & Yu, Mingzhu & Lee, Chung-Yee & Du, Yuquan, 2021. "Contracting in ocean transportation with empty container repositioning under asymmetric information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christensen, Jonas & Pacino, Dario, 2017. "A matheuristic for the Cargo Mix Problem with Block Stowage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 151-171.
    2. Byung Kwon Lee & Joyce M. W. Low, 2022. "A constraint programming approach to capacity planning in container vessels," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 415-438, June.
    3. Monaco, Maria Flavia & Sammarra, Marcello & Sorrentino, Gregorio, 2014. "The Terminal-Oriented Ship Stowage Planning Problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 256-265.
    4. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    5. Ding, Ding & Chou, Mabel C., 2015. "Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts," European Journal of Operational Research, Elsevier, vol. 246(1), pages 242-249.
    6. Rune Larsen & Dario Pacino, 2021. "A heuristic and a benchmark for the stowage planning problem," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 94-122, March.
    7. Fazi, Stefano, 2019. "A decision-support framework for the stowage of maritime containers in inland shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 1-23.
    8. Dalia Rashed & Amr Eltawil & Mohamed Gheith, 2021. "A Fuzzy Logic-Based Algorithm to Solve the Slot Planning Problem in Container Vessels," Logistics, MDPI, vol. 5(4), pages 1-24, September.
    9. R. Roberti & D. Pacino, 2018. "A Decomposition Method for Finding Optimal Container Stowage Plans," Service Science, INFORMS, vol. 52(6), pages 1444-1462, December.
    10. Huiling Zhu, 2022. "Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal Yard Operations," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    11. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    12. Chien-Chang Chou & Pao-Yi Fang, 2021. "Applying expert knowledge to containership stowage planning: an empirical study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 4-27, March.
    13. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    14. Shih-Liang Chao & Pi-Hung Lin, 0. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 0, pages 1-23.
    15. Shih-Liang Chao & Pi-Hung Lin, 2021. "Minimizing overstowage in master bay plans of large container ships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 71-93, March.
    16. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    17. Korach, Aleksandra & Brouer, Berit Dangaard & Jensen, Rune Møller, 2020. "Matheuristics for slot planning of container vessel bays," European Journal of Operational Research, Elsevier, vol. 282(3), pages 873-885.
    18. Daniela Ambrosino & Anna Sciomachen, 2021. "A shipping line stowage-planning procedure in the presence of hazardous containers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 49-70, March.
    19. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
    20. Goerigk, Marc & Knust, Sigrid & Le, Xuan Thanh, 2016. "Robust storage loading problems with stacking and payload constraints," European Journal of Operational Research, Elsevier, vol. 253(1), pages 51-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:123:y:2019:i:c:p:200-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.