IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v291y2020i1d10.1007_s10479-018-3125-3.html
   My bibliography  Save this article

The integrated berth allocation, quay crane assignment and scheduling problem: mathematical formulations and a case study

Author

Listed:
  • Omar Abou Kasm

    (New York University)

  • Ali Diabat

    (New York University
    New York University Abu Dhabi)

  • T. C. E. Cheng

    (The Hong Kong Polytechnic University)

Abstract

This paper considers the integration of three essential seaport terminal operations: the berth allocation problem, the quay crane assignment problem (QCAP), and the quay crane scheduling problem (QCSP). The paper presents a new mathematical formulation that captures all associated operations and constraints. Different quay crane operational policies are considered, namely permitting versus not permitting bay task preemption in QCSP and static versus dynamic crane allocations in QCAP. Thus, variants of the mathematical formulation are introduced to capture the different combinations of these scenarios. Due to the preemption consideration, the models include disaggregated quay crane (QC) tasks. Specifically, QC tasks are identified by single container movements as opposed to bay or stack task allocations that are commonly used in the literature. A case study based on Abu Dhabi’s container terminal is presented where the use of the proposed mathematical models are compared against the current existing operational approach. Results show that the service times can be significantly decreased by the use of the proposed models. Moreover, the policy choice effect on the total schedule is compared through simulated examples and Abu Dhabi’s container terminal case study. The results show that the policy improvements can depend on the problem’s attributes and thus a better policy cannot be generalized.

Suggested Citation

  • Omar Abou Kasm & Ali Diabat & T. C. E. Cheng, 2020. "The integrated berth allocation, quay crane assignment and scheduling problem: mathematical formulations and a case study," Annals of Operations Research, Springer, vol. 291(1), pages 435-461, August.
  • Handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-018-3125-3
    DOI: 10.1007/s10479-018-3125-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3125-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3125-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2014. "Optimal berth allocation and time-invariant quay crane assignment in container terminals," European Journal of Operational Research, Elsevier, vol. 235(1), pages 88-101.
    2. Han, Xiao-le & Lu, Zhi-qiang & Xi, Li-feng, 2010. "A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1327-1340, December.
    3. Unsal, Ozgur & Oguz, Ceyda, 2013. "Constraint programming approach to quay crane scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 108-122.
    4. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    5. Young-Man Park & Kap Hwan Kim, 2005. "A scheduling method for Berth and Quay cranes," Springer Books, in: Hans-Otto Günther & Kap Hwan Kim (ed.), Container Terminals and Automated Transport Systems, pages 159-181, Springer.
    6. Chang, Daofang & Jiang, Zuhua & Yan, Wei & He, Junliang, 2010. "Integrating berth allocation and quay crane assignments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 975-990, November.
    7. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
    8. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
    9. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    10. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    11. Noura Al-Dhaheri & Ali Diabat, 2017. "A Lagrangian relaxation-based heuristic for the multi-ship quay crane scheduling problem with ship stability constraints," Annals of Operations Research, Springer, vol. 248(1), pages 1-24, January.
    12. Imai, Akio & Chen, Hsieh Chia & Nishimura, Etsuko & Papadimitriou, Stratos, 2008. "The simultaneous berth and quay crane allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 900-920, September.
    13. Ilaria Vacca & Matteo Salani & Michel Bierlaire, 2013. "An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment," Transportation Science, INFORMS, vol. 47(2), pages 148-161, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
    2. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    3. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    4. Abou Kasm, Omar & Diabat, Ali & Chow, Joseph Y.J., 2023. "Simultaneous operation of next-generation and traditional quay cranes at container terminals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1110-1125.
    5. Chargui, Kaoutar & Zouadi, Tarik & El Fallahi, Abdellah & Reghioui, Mohamed & Aouam, Tarik, 2021. "Berth and quay crane allocation and scheduling with worker performance variability and yard truck deployment in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Abou Kasm, Omar & Diabat, Ali & Bierlaire, Michel, 2021. "Vessel scheduling with pilotage and tugging considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    7. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2021. "Joint optimization of container slot planning and truck scheduling for tandem quay cranes," European Journal of Operational Research, Elsevier, vol. 293(1), pages 149-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    2. Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
    3. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    4. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    5. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    6. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    7. Correcher, Juan F. & Alvarez-Valdes, Ramon & Tamarit, Jose M., 2019. "New exact methods for the time-invariant berth allocation and quay crane assignment problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 80-92.
    8. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    9. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    10. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    11. Liu, Ming & Lee, Chung-Yee & Zhang, Zizhen & Chu, Chengbin, 2016. "Bi-objective optimization for the container terminal integrated planning," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 720-749.
    12. Abou Kasm, Omar & Diabat, Ali & Bierlaire, Michel, 2021. "Vessel scheduling with pilotage and tugging considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    13. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    14. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    15. Bouzekri, Hamza & Alpan, Gülgün & Giard, Vincent, 2021. "Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem in tidal ports with multiple quays," European Journal of Operational Research, Elsevier, vol. 293(3), pages 892-909.
    16. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    17. Noura Al-Dhaheri & Ali Diabat, 2017. "A Lagrangian relaxation-based heuristic for the multi-ship quay crane scheduling problem with ship stability constraints," Annals of Operations Research, Springer, vol. 248(1), pages 1-24, January.
    18. Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.
    19. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    20. Sung Won Cho & Hyun Ji Park & Chulung Lee, 2021. "An integrated method for berth allocation and quay crane assignment to allow for reassignment of vessels to other terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 123-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-018-3125-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.