IDEAS home Printed from
   My bibliography  Save this article

Online scheduling policies for multiclass call centers with impatient customers


  • Jouini, Oualid
  • Pot, Auke
  • Koole, Ger
  • Dallery, Yves


We consider a call center with two classes of impatient customers: premium and regular classes. Modeling our call center as a multiclass GI/GI/s+M queue, we focus on developing scheduling policies that satisfy a target ratio constraint on the abandonment probabilities of premium customers to regular ones. The problem is inspired by a real call center application in which we want to reach some predefined preference between customer classes for any workload condition. The motivation for this constraint comes from the difficulty of predicting in a quite satisfying way the workload. In such a case, the traditional routing problem formulation with differentiated service levels for different customer classes would be useless. For this new problem formulation, we propose two families of online scheduling policies: queue joining and call selection policies. The principle of our policies is that we adjust their routing rules by dynamically changing their parameters. We then evaluate the performance of these policies through a numerical study. The policies are characterized by simplicity and ease of implementation.

Suggested Citation

  • Jouini, Oualid & Pot, Auke & Koole, Ger & Dallery, Yves, 2010. "Online scheduling policies for multiclass call centers with impatient customers," European Journal of Operational Research, Elsevier, vol. 207(1), pages 258-268, November.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:258-268

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Athanassios N. Avramidis & Alexandre Deslauriers & Pierre L'Ecuyer, 2004. "Modeling Daily Arrivals to a Telephone Call Center," Management Science, INFORMS, vol. 50(7), pages 896-908, July.
    2. Joseph M. Milner & Tava Lennon Olsen, 2008. "Service-Level Agreements in Call Centers: Perils and Prescriptions," Management Science, INFORMS, vol. 54(2), pages 238-252, February.
    3. Ward Whitt, 2005. "Engineering Solution of a Basic Call-Center Model," Management Science, INFORMS, vol. 51(2), pages 221-235, February.
    4. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    5. Duder, John C. & Rosenwein, Moshe B., 2001. "Towards "zero abandonments" in call center performance," European Journal of Operational Research, Elsevier, vol. 135(1), pages 50-56, November.
    6. Ward Whitt, 2004. "Efficiency-Driven Heavy-Traffic Approximations for Many-Server Queues with Abandonments," Management Science, INFORMS, vol. 50(10), pages 1449-1461, October.
    7. Itay Gurvich & Mor Armony & Avishai Mandelbaum, 2008. "Service-Level Differentiation in Call Centers with Fully Flexible Servers," Management Science, INFORMS, vol. 54(2), pages 279-294, February.
    8. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    9. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.
    10. O. Garnet & A. Mandelbaum & M. Reiman, 2002. "Designing a Call Center with Impatient Customers," Manufacturing & Service Operations Management, INFORMS, vol. 4(3), pages 208-227, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:ejores:v:274:y:2019:i:1:p:303-316 is not listed on IDEAS
    2. Terry James & Kevin Glazebrook & Kyle Lin, 2016. "Developing Effective Service Policies for Multiclass Queues with Abandonment: Asymptotic Optimality and Approximate Policy Improvement," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 251-264, May.
    3. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    4. Urtzi Ayesta & Peter Jacko & Vladimir Novak, 2017. "Scheduling of multi-class multi-server queueing systems with abandonments," Journal of Scheduling, Springer, vol. 20(2), pages 129-145, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:258-268. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.