IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v15y2013i1p72-85.html
   My bibliography  Save this article

Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models

Author

Listed:
  • Rouba Ibrahim

    (Department of Management Science and Innovation, University College London, London WC1E 6BT, United Kingdom)

  • Pierre L'Ecuyer

    (Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada)

Abstract

We consider different statistical models for the call arrival process in telephone call centers. We evaluate the forecasting accuracy of those models by describing results from an empirical study analyzing real-life call center data. We test forecasting accuracy using different lead times, ranging from weeks to hours in advance, to mimic real-life challenges faced by call center managers. The models considered are (i) a benchmark fixed-effects model that does not exploit any dependence structures in the data; (ii) a mixed-effects model that takes into account both interday (day-to-day) and intraday (within-day) correlations; and (iii) two new bivariate mixed-effects models, for the joint distribution of the arrival counts to two separate queues, that exploit correlations between different call types. Our study shows the importance of accounting for different correlation structures in the data.

Suggested Citation

  • Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
  • Handle: RePEc:inm:ormsom:v:15:y:2013:i:1:p:72-85
    DOI: 10.1287/msom.1120.0405
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1120.0405
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.1120.0405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Athanassios N. Avramidis & Alexandre Deslauriers & Pierre L'Ecuyer, 2004. "Modeling Daily Arrivals to a Telephone Call Center," Management Science, INFORMS, vol. 50(7), pages 896-908, July.
    2. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
    3. Geurt Jongbloed & Ger Koole, 2001. "Managing uncertainty in call centres using Poisson mixtures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 307-318, October.
    4. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    5. James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, vol. 54(2), pages 253-265, February.
    6. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    7. Bruce H. Andrews & Shawn M. Cunningham, 1995. "L. L. Bean Improves Call-Center Forecasting," Interfaces, INFORMS, vol. 25(6), pages 1-13, December.
    8. Bianchi, Lisa & Jarrett, Jeffrey & Choudary Hanumara, R., 1998. "Improving forecasting for telemarketing centers by ARIMA modeling with intervention," International Journal of Forecasting, Elsevier, vol. 14(4), pages 497-504, December.
    9. Weinberg, Jonathan & Brown, Lawrence D. & Stroud, Jonathan R., 2007. "Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1185-1198, December.
    10. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    11. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.
    12. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    2. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    3. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    4. Notz, Pascal M. & Wolf, Peter K. & Pibernik, Richard, 2023. "Prescriptive analytics for a multi-shift staffing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 887-901.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    7. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    8. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    9. Ding, S. & Koole, G. & van der Mei, R.D., 2015. "On the estimation of the true demand in call centers with redials and reconnects," European Journal of Operational Research, Elsevier, vol. 246(1), pages 250-262.
    10. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    11. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    12. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    13. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    2. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    5. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    6. Haipeng Shen & Jianhua Z. Huang, 2008. "Interday Forecasting and Intraday Updating of Call Center Arrivals," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 391-410, July.
    7. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    8. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    9. Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
    10. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    11. Ding, S. & Koole, G. & van der Mei, R.D., 2015. "On the estimation of the true demand in call centers with redials and reconnects," European Journal of Operational Research, Elsevier, vol. 246(1), pages 250-262.
    12. James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, vol. 54(2), pages 253-265, February.
    13. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    14. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    15. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    16. Tevfik Aktekin & Refik Soyer, 2011. "Call center arrival modeling: A Bayesian state‐space approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 28-42, February.
    17. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
    18. Jouini, Oualid & Pot, Auke & Koole, Ger & Dallery, Yves, 2010. "Online scheduling policies for multiclass call centers with impatient customers," European Journal of Operational Research, Elsevier, vol. 207(1), pages 258-268, November.
    19. Landon, Joshua & Ruggeri, Fabrizio & Soyer, Refik & Murat Tarimcilar, M., 2010. "Modeling latent sources in call center arrival data," European Journal of Operational Research, Elsevier, vol. 204(3), pages 597-603, August.
    20. Ibrahim, Rouba & L’Ecuyer, Pierre & Shen, Haipeng & Thiongane, Mamadou, 2016. "Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers," European Journal of Operational Research, Elsevier, vol. 250(2), pages 480-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:15:y:2013:i:1:p:72-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.