IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i1p250-262.html
   My bibliography  Save this article

On the estimation of the true demand in call centers with redials and reconnects

Author

Listed:
  • Ding, S.
  • Koole, G.
  • van der Mei, R.D.

Abstract

In practice, in many call centers customers often perform redials (i.e., reattempt after an abandonment) and reconnects (i.e., reattempt after an answered call). In the literature, call center models usually do not cover these features, while real data analysis and simulation results show ignoring them inevitably leads to inaccurate estimation of the total inbound volume. Therefore, in this paper we propose a performance model that includes both features. In our model, the total volume consists of three types of calls: (1) fresh calls (i.e., initial call attempts), (2) redials, and (3) reconnects. In practice, the total volume is used to make forecasts, while according to the simulation results, this could lead to high forecast errors, and subsequently wrong staffing decisions. However, most of the call center data sets do not have customer-identity information, which makes it difficult to identify how many calls are fresh and what fractions of the calls are redials and reconnects.

Suggested Citation

  • Ding, S. & Koole, G. & van der Mei, R.D., 2015. "On the estimation of the true demand in call centers with redials and reconnects," European Journal of Operational Research, Elsevier, vol. 246(1), pages 250-262.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:250-262
    DOI: 10.1016/j.ejor.2015.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715003112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    2. Athanassios N. Avramidis & Alexandre Deslauriers & Pierre L'Ecuyer, 2004. "Modeling Daily Arrivals to a Telephone Call Center," Management Science, INFORMS, vol. 50(7), pages 896-908, July.
    3. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    4. Bruce H. Andrews & Shawn M. Cunningham, 1995. "L. L. Bean Improves Call-Center Forecasting," Interfaces, INFORMS, vol. 25(6), pages 1-13, December.
    5. Aguir, M. Salah & Aksin, O. Zeynep & Karaesmen, Fikri & Dallery, Yves, 2008. "On the interaction between retrials and sizing of call centers," European Journal of Operational Research, Elsevier, vol. 191(2), pages 398-408, December.
    6. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    7. Weinberg, Jonathan & Brown, Lawrence D. & Stroud, Jonathan R., 2007. "Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1185-1198, December.
    8. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    9. Stolletz, Raik, 2008. "Approximation of the non-stationary M(t)/M(t)/c(t)-queue using stationary queueing models: The stationary backlog-carryover approach," European Journal of Operational Research, Elsevier, vol. 190(2), pages 478-493, October.
    10. James W. Taylor, 2008. "A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center," Management Science, INFORMS, vol. 54(2), pages 253-265, February.
    11. Hoffman, Karla L. & Harris, Carl M., 1986. "Estimation of a caller retrial rate for a telephone information system," European Journal of Operational Research, Elsevier, vol. 27(2), pages 207-214, October.
    12. Chen, Jeesen & Rubin, Herman, 1986. "Bounds for the difference between median and mean of gamma and poisson distributions," Statistics & Probability Letters, Elsevier, vol. 4(6), pages 281-283, October.
    13. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    14. Geurt Jongbloed & Ger Koole, 2001. "Managing uncertainty in call centres using Poisson mixtures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 307-318, October.
    15. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    16. J.R. Artalejo & M. Pozo, 2002. "Numerical Calculation of the Stationary Distribution of the Main Multiserver Retrial Queue," Annals of Operations Research, Springer, vol. 116(1), pages 41-56, October.
    17. Haipeng Shen & Jianhua Z. Huang, 2008. "Interday Forecasting and Intraday Updating of Call Center Arrivals," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 391-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Sun & Yunan Liu, 2021. "Staffing many‐server queues with autoregressive inputs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 312-326, April.
    2. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    3. Miao Yu & Yu Zhao & Chunguang Chang & Liangliang Sun, 2023. "Fluid models for customer service web chat systems with interactive automated service," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 572-598, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    3. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    4. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    5. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    6. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    7. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    8. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    9. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    10. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    11. Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
    12. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    13. Haipeng Shen & Jianhua Z. Huang, 2008. "Interday Forecasting and Intraday Updating of Call Center Arrivals," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 391-410, July.
    14. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    15. Tevfik Aktekin & Refik Soyer, 2011. "Call center arrival modeling: A Bayesian state‐space approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 28-42, February.
    16. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    17. Aktekin, Tevfik, 2014. "Call center service process analysis: Bayesian parametric and semi-parametric mixture modeling," European Journal of Operational Research, Elsevier, vol. 234(3), pages 709-719.
    18. Alex Roubos & Ger Koole & Raik Stolletz, 2012. "Service-Level Variability of Inbound Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 402-413, July.
    19. Ward Whitt & Jingtong Zhao, 2017. "Many‐server loss models with non‐poisson time‐varying arrivals," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 177-202, April.
    20. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:250-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.