IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipas0304407624000216.html
   My bibliography  Save this article

Distributional counterfactual analysis in high-dimensional setup

Author

Listed:
  • Masini, Ricardo

Abstract

In the context of treatment effect estimation, this paper proposes a new methodology to recover the counterfactual distribution when there is a single (or a few) treated unit and possibly a high-dimensional number of potential controls observed in a panel structure. The methodology accommodates, albeit does not require, the number of units to be larger than the number of time periods (high-dimensional setup). As opposed to model only the conditional mean, we propose to model the entire conditional quantile function (CQF) in the absence of intervention and estimate it using the pre-intervention period using a penalized regression. We derive non-asymptotic bounds for the estimated CQF valid uniformly over the quantiles, allowing the practitioner to re-construct the entire contractual distribution. Moreover, we bound the probability coverage of this estimated CQF which can be used to construct valid confidence intervals for the (possibly random) treatment effect for every post-intervention period or simultaneously. We also propose a new hypothesis test for the sharp null of no-effect based on the Lp norm of deviation of the estimated CQF to the population one. Interestingly, the null distribution is quasi-pivotal in the sense that it only depends on the estimated CQF, Lp norm, and the number of post-intervention periods, but not on the size of the post-intervention period. For that reason, critical values can then be easily simulated. We illustrate the methodology is by revisiting the empirical study in Acemoglu et al. (2016).

Suggested Citation

  • Masini, Ricardo, 2025. "Distributional counterfactual analysis in high-dimensional setup," Journal of Econometrics, Elsevier, vol. 249(PA).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624000216
    DOI: 10.1016/j.jeconom.2024.105675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624000216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624000216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.