IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipas0304407624000216.html
   My bibliography  Save this article

Distributional counterfactual analysis in high-dimensional setup

Author

Listed:
  • Masini, Ricardo

Abstract

In the context of treatment effect estimation, this paper proposes a new methodology to recover the counterfactual distribution when there is a single (or a few) treated unit and possibly a high-dimensional number of potential controls observed in a panel structure. The methodology accommodates, albeit does not require, the number of units to be larger than the number of time periods (high-dimensional setup). As opposed to model only the conditional mean, we propose to model the entire conditional quantile function (CQF) in the absence of intervention and estimate it using the pre-intervention period using a penalized regression. We derive non-asymptotic bounds for the estimated CQF valid uniformly over the quantiles, allowing the practitioner to re-construct the entire contractual distribution. Moreover, we bound the probability coverage of this estimated CQF which can be used to construct valid confidence intervals for the (possibly random) treatment effect for every post-intervention period or simultaneously. We also propose a new hypothesis test for the sharp null of no-effect based on the Lp norm of deviation of the estimated CQF to the population one. Interestingly, the null distribution is quasi-pivotal in the sense that it only depends on the estimated CQF, Lp norm, and the number of post-intervention periods, but not on the size of the post-intervention period. For that reason, critical values can then be easily simulated. We illustrate the methodology is by revisiting the empirical study in Acemoglu et al. (2016).

Suggested Citation

  • Masini, Ricardo, 2025. "Distributional counterfactual analysis in high-dimensional setup," Journal of Econometrics, Elsevier, vol. 249(PA).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624000216
    DOI: 10.1016/j.jeconom.2024.105675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624000216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    2. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    3. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    4. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    5. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    6. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    7. Acemoglu, Daron & Johnson, Simon & Kermani, Amir & Kwak, James & Mitton, Todd, 2016. "The value of connections in turbulent times: Evidence from the United States," Journal of Financial Economics, Elsevier, vol. 121(2), pages 368-391.
    8. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    9. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    10. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    11. Yingjie Feng, 2020. "Causal Inference in Possibly Nonlinear Factor Models," Papers 2008.13651, arXiv.org, revised Oct 2021.
    12. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    13. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2022. "Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 574-590, April.
    14. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    15. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    16. Alberto Abadie & Jérémy L’Hour, 2021. "A Penalized Synthetic Control Estimator for Disaggregated Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1817-1834, October.
    17. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Masini, 2022. "Distributional Counterfactual Analysis in High-Dimensional Setup," Papers 2202.11671, arXiv.org, revised Sep 2023.
    2. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    4. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    5. Zhentao Shi & Jin Xi & Haitian Xie, 2025. "A Synthetic Business Cycle Approach to Counterfactual Analysis with Nonstationary Macroeconomic Data," Papers 2505.22388, arXiv.org.
    6. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    7. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    8. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    9. Alberto Abadie & Jaume Vives-i-Bastida, 2022. "Synthetic Controls in Action," Papers 2203.06279, arXiv.org.
    10. Yihong Xu & Li Zheng, 2025. "Quantile Treatment Effects in High Dimensional Panel Data," Papers 2504.00785, arXiv.org, revised Jun 2025.
    11. Cruz A. Echevarría & Serhat Hasancebi & Javier García-Enríquez, 2022. "Economic Effects of Macao’s Integration with Mainland China: A Causal Inference Study," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 37(2), pages 179-215.
    12. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.
    13. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    14. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    15. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    16. Tomasz Serwach, 2023. "The European Union and within‐country income inequalities. The case of the new member states," The World Economy, Wiley Blackwell, vol. 46(7), pages 1890-1939, July.
    17. Tomasz Serwach, 2022. "The European Union and within-country income inequalities. The case of the New Member States," Working Papers hal-03548416, HAL.
    18. Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
    19. Alejo, Javier & Galvao, Antonio F. & Martinez-Iriarte, Julian & Montes-Rojas, Gabriel, 2025. "Unconditional quantile partial effects via conditional quantile regression," Journal of Econometrics, Elsevier, vol. 249(PA).
    20. Vincent Geloso & Chandler S. Reilly, 2025. "Revisiting Quebec's Quiet Revolution: A synthetic control analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 58(2), pages 548-579, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624000216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.