IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v237y2023i2s0304407622000689.html
   My bibliography  Save this article

Dynamic clustering of multivariate panel data

Author

Listed:
  • Custodio João, Igor
  • Lucas, André
  • Schaumburg, Julia
  • Schwaab, Bernd

Abstract

We propose a dynamic clustering model for uncovering latent time-varying group structures in multivariate panel data. The model is dynamic in three ways. First, the cluster location and scale matrices are time-varying to track gradual changes in cluster characteristics over time. Second, all units can transition between clusters based on a Hidden Markov model (HMM). Finally, the HMM’s transition matrix can depend on lagged time-varying cluster distances as well as economic covariates. Monte Carlo experiments suggest that the units can be classified reliably in a variety of challenging settings. Incorporating dynamics in the cluster composition proves empirically important in a study of 299 European banks between 2008Q1 and 2018Q2. We find that approximately 3% of banks transition per quarter on average. Transition probabilities are in part explained by differences in bank profitability, suggesting that factors contributing to low profitability for some banks can lead to long-lasting changes in financial industry structure.

Suggested Citation

  • Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
  • Handle: RePEc:eee:econom:v:237:y:2023:i:2:s0304407622000689
    DOI: 10.1016/j.jeconom.2022.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. André Lucas & Julia Schaumburg & Bernd Schwaab, 2019. "Bank Business Models at Zero Interest Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 542-555, July.
    2. Anne Opschoor & Pawel Janus & André Lucas & Dick Van Dijk, 2018. "New HEAVY Models for Fat-Tailed Realized Covariances and Returns," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 643-657, October.
    3. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    4. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bollerslev, Tim & Patton, Andrew J. & Zhang, Haozhe, 2022. "Equity clusters through the lens of realized semicorrelations," Economics Letters, Elsevier, vol. 211(C).
    2. Igor Custodio João & Andre Lucas & Julia Schaumburg, 2021. "Clustering Dynamics and Persistence for Financial Multivariate Panel Data," Tinbergen Institute Discussion Papers 21-040/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric A. Beutner & Yicong Lin & Andre Lucas, 2023. "Consistency, distributional convergence, and optimality of score-driven filters," Tinbergen Institute Discussion Papers 23-051/III, Tinbergen Institute.
    2. Thomas Baudin & Robert Stelter, 2022. "The rural exodus and the rise of Europe," Journal of Economic Growth, Springer, vol. 27(3), pages 365-414, September.
    3. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    4. John M. Abowd & Francis Kramarz & Sébastien Pérez-Duarte & Ian M. Schmutte, 2018. "Sorting Between and Within Industries: A Testable Model of Assortative Matching," Annals of Economics and Statistics, GENES, issue 129, pages 1-32.
    5. Jason Matthew DeBacker, 2015. "Flip‐Flopping: Ideological Adjustment Costs In The United States Senate," Economic Inquiry, Western Economic Association International, vol. 53(1), pages 108-128, January.
    6. Haan, Peter & Prowse, Victoria L., 2010. "The Design of Unemployment Transfers: Evidence from a Dynamic Structural Life-Cycle Model," IZA Discussion Papers 4792, Institute of Labor Economics (IZA).
    7. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
    8. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    9. Roman Sustek, 2011. "Monetary Business Cycle Accounting," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(4), pages 592-612, October.
    10. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.
    11. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    12. Pudney, Stephen, 2011. "Perception and retrospection: The dynamic consistency of responses to survey questions on wellbeing," Journal of Public Economics, Elsevier, vol. 95(3), pages 300-310.
    13. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    14. Zhang, Weibin & Zha, Huazhu & Zhang, Shuai & Ma, Lei, 2023. "Road section traffic flow prediction method based on the traffic factor state network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    15. Harvey, A., 2021. "Score-driven time series models," Cambridge Working Papers in Economics 2133, Faculty of Economics, University of Cambridge.
    16. Lena Janys & Bettina Siflinger, 2021. "Mental Health and Abortions among Young Women: Time-varying Unobserved Heterogeneity, Health Behaviors, and Risky Decisions," Papers 2103.12159, arXiv.org, revised May 2022.
    17. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    18. Pietro Bonaldi & Juan D. Prada & Andrés González & Diego Rodríguez, 2011. "Método numérico para la calibración de un modelo dsge," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, December.
    19. Asgharian, Hossein, 2011. "A conditional asset-pricing model with the optimal orthogonal portfolio," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1027-1040, May.
    20. A. Colin Cameron & Per Johansson, 2004. "Bivariate Count Data Regression Using Series Expansions: With Applications," Working Papers 9815, University of California, Davis, Department of Economics.

    More about this item

    Keywords

    Dynamic clustering; Panel data; Hidden Markov Model; Score-driven dynamics; Bank business models;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:237:y:2023:i:2:s0304407622000689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.