IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v221y2021i2p337-367.html
   My bibliography  Save this article

Estimation of dynamic panel spatial vector autoregression: Stability and spatial multivariate cointegration

Author

Listed:
  • Yang, Kai
  • Lee, Lung-fei

Abstract

This paper introduces dynamic panel spatial vector autoregressive models. We study features of dynamics and spatial interactions that an SVAR model can generate and classify the model into stable or unstable cases by partitioning parameter spaces. For stable, spatial cointegration, and mixed cointegration cases, we investigate identification and QML estimation of the models to take into account simultaneity and correlated relationships. Asymptotic properties and bias-corrected estimators are presented. To detect unknown cointegration relationships, we introduce a sequential likelihood ratio testing procedure. Simulations show the advantage of QMLEs on bias reduction and efficiency gains. The empirical application provides evidences on ancient China’s market integration.

Suggested Citation

  • Yang, Kai & Lee, Lung-fei, 2021. "Estimation of dynamic panel spatial vector autoregression: Stability and spatial multivariate cointegration," Journal of Econometrics, Elsevier, vol. 221(2), pages 337-367.
  • Handle: RePEc:eee:econom:v:221:y:2021:i:2:p:337-367
    DOI: 10.1016/j.jeconom.2020.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762030227X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    3. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    4. Thomas de Graaff & Frank G. van Oort & Raymond J.G.M. Florax, 2012. "Regional Population–Employment Dynamics Across Different Sectors Of The Economy," Journal of Regional Science, Wiley Blackwell, vol. 52(1), pages 60-84, February.
    5. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    6. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    7. Jorg Breitung, 2005. "A Parametric approach to the Estimation of Cointegration Vectors in Panel Data," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 151-173.
    8. Michael Beenstock & Daniel Felsenstein, 2007. "Spatial Vector Autoregressions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 2(2), pages 167-196.
    9. Hans Dewachter & Romain Houssa & Priscilla Toffano, 2012. "Spatial propagation of macroeconomic shocks in Europe," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 148(2), pages 377-402, June.
    10. Ethan Cohen‐Cole & Xiaodong Liu & Yves Zenou, 2018. "Multivariate choices and identification of social interactions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 165-178, March.
    11. Baltagi, Badi H., 2006. "Random Effects And Spatial Autocorrelation With Equal Weights," Econometric Theory, Cambridge University Press, vol. 22(5), pages 973-984, October.
    12. Xiaodong Liu, 2014. "Identification and Efficient Estimation of Simultaneous Equations Network Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 516-536, October.
    13. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    14. Kelejian, Harry H. & Prucha, Ingmar R., 2004. "Estimation of simultaneous systems of spatially interrelated cross sectional equations," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 27-50.
    15. Hauptmeier, Sebastian & Mittermaier, Ferdinand & Rincke, Johannes, 2012. "Fiscal competition over taxes and public inputs," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 407-419.
    16. Jan Mutl, 2002. "Panel VAR Models with Spatial Dependence," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 A5-2, International Conferences on Panel Data.
    17. Maarten A. Allers & J. Paul Elhorst, 2011. "A Simultaneous Equations Model Of Fiscal Policy Interactions," Journal of Regional Science, Wiley Blackwell, vol. 51(2), pages 271-291, May.
    18. Kristine M. Brown & Ron A. Laschever, 2012. "When They're Sixty-Four: Peer Effects and the Timing of Retirement," American Economic Journal: Applied Economics, American Economic Association, vol. 4(3), pages 90-115, July.
    19. Rolf Larsson & Johan Lyhagen & Mickael Lothgren, 2001. "Likelihood-based cointegration tests in heterogeneous panels," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-41.
    20. Badi H. Baltagi & Ying Deng, 2015. "EC3SLS Estimator for a Simultaneous System of Spatial Autoregressive Equations with Random Effects," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 659-694, December.
    21. Gebremeskel H. Gebremariam & Tesfa G. Gebremedhin & Peter V. Schaeffer, 2011. "Employment, Income, And Migration In Appalachia: A Spatial Simultaneous Equations Approach," Journal of Regional Science, Wiley Blackwell, vol. 51(1), pages 102-120, February.
    22. Quah, Danny, 1994. "Exploiting cross-section variation for unit root inference in dynamic data," Economics Letters, Elsevier, vol. 44(1-2), pages 9-19.
    23. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    24. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    25. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    26. Yu, Jihai & Lee, Lung-fei, 2010. "Estimation Of Unit Root Spatial Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1332-1362, October.
    27. Carol H. Shiue, 2002. "Transport Costs and the Geography of Arbitrage in Eighteenth-Century China," American Economic Review, American Economic Association, vol. 92(5), pages 1406-1419, December.
    28. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    29. Keller, Wolfgang & Shiue, Carol H., 2007. "The origin of spatial interaction," Journal of Econometrics, Elsevier, vol. 140(1), pages 304-332, September.
    30. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    31. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    32. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves, 2014. "Endogenous peer effects: local aggregate or local average?," Journal of Economic Behavior & Organization, Elsevier, vol. 103(C), pages 39-59.
    33. Li, Kunpeng, 2017. "Fixed-effects dynamic spatial panel data models and impulse response analysis," Journal of Econometrics, Elsevier, vol. 198(1), pages 102-121.
    34. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    35. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    36. Korniotis, George M., 2010. "Estimating Panel Models With Internal and External Habit Formation," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 145-158.
    37. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    38. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    39. Yang, Kai & Lee, Lung-fei, 2017. "Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 196(1), pages 196-214.
    40. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Costola & Matteo Iacopini & Casper Wichers, 2023. "Bayesian SAR model with stochastic volatility and multiple time-varying weights," Papers 2310.17473, arXiv.org.
    2. Matteo Barigozzi & Giuseppe Cavaliere & Graziano Moramarco, 2022. "Factor Network Autoregressions," Papers 2208.02925, arXiv.org, revised Feb 2024.
    3. Christian Glocker & Matteo Iacopini & Tam'as Krisztin & Philipp Piribauer, 2023. "A Bayesian Markov-switching SAR model for time-varying cross-price spillovers," Papers 2310.19557, arXiv.org.
    4. Danqing Chen & Jianbao Chen & Shuangshuang Li, 2021. "Instrumental Variable Quantile Regression of Spatial Dynamic Durbin Panel Data Model with Fixed Effects," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    5. Rui Yang & Xin An & Yingwen Chen & Xiuli Yang, 2023. "The Knowledge Analysis of Panel Vector Autoregression: A Systematic Review," SAGE Open, , vol. 13(4), pages 21582440231, December.
    6. Yao Li & Yugang He, 2024. "Unraveling Korea’s Energy Challenge: The Consequences of Carbon Dioxide Emissions and Energy Use on Economic Sustainability," Sustainability, MDPI, vol. 16(5), pages 1-29, March.
    7. Costola, Michele & Iacopini, Matteo & Wichers, Casper, 2023. "Bayesian SAR model with stochastic volatility and multiple time-varying weights," SAFE Working Paper Series 407, Leibniz Institute for Financial Research SAFE.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.
    2. Yang, Kai & Lee, Lung-fei, 2017. "Identification and QML estimation of multivariate and simultaneous equations spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 196(1), pages 196-214.
    3. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    4. Marius C. O. Amba & Taoufiki Mbratana & Julie Gallo, 2023. "Spatial panel simultaneous equations models with error components," Empirical Economics, Springer, vol. 65(3), pages 1149-1196, September.
    5. AMBA OYON, Claude Marius & Mbratana, Taoufiki, 2017. "Simultaneous equation models with spatially autocorrelated error components," MPRA Paper 82395, University Library of Munich, Germany.
    6. Lee, Lung-fei & Yu, Jihai, 2015. "Estimation of fixed effects panel regression models with separable and nonseparable space–time filters," Journal of Econometrics, Elsevier, vol. 184(1), pages 174-192.
    7. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    8. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    9. William C. Horrace & Hyunseok Jung & Shane Sanders, 2022. "Network Competition and Team Chemistry in the NBA," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 35-49, January.
    10. Kwok, Hon Ho, 2019. "Identification and estimation of linear social interaction models," Journal of Econometrics, Elsevier, vol. 210(2), pages 434-458.
    11. Heather D Gibson & Stephen G Hall & Deborah GeFang & Pavlos Petroulas & George S Tavlas, 2021. "Cross-country spillovers of national financial markets and the effectiveness of ECB policies during the euro-area crisis," Oxford Economic Papers, Oxford University Press, vol. 73(4), pages 1454-1470.
    12. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    13. Wang, Wei & Lee, Lung-Fei & Bao, Yan, 2018. "GMM estimation of the spatial autoregressive model in a system of interrelated networks," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 167-198.
    14. Qu, Xi & Lee, Lung-fei & Yu, Jihai, 2017. "QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices," Journal of Econometrics, Elsevier, vol. 197(2), pages 173-201.
    15. Xiaodong Liu, 2020. "GMM identification and estimation of peer effects in a system of simultaneous equations," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-27, December.
    16. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    17. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    18. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    19. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    20. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.

    More about this item

    Keywords

    Dynamic panel; Spatial vector autoregression; Identification; Quasi-maximum likelihood; Spatial cointegration; Market integration;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:221:y:2021:i:2:p:337-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.