IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v22y2006i05p973-984_06.html

Random Effects And Spatial Autocorrelation With Equal Weights

Author

Listed:
  • Baltagi, Badi H.

Abstract

This note considers a panel data regression model with spatial autoregressive disturbances and random effects where the weight matrix is normalized and has equal elements. This is motivated by Kelejian, Prucha, and Yuzefovich (2005, Journal of Regional Science, forthcoming), who argue that such a weighting matrix, having blocks of equal elements, might be considered when units are equally distant within certain neighborhoods but unrelated between neighborhoods. We derive a simple weighted least squares transformation that obtains generalized least squares (GLS) on this model as a simple ordinary least squares (OLS). For the special case of a spatial panel model with no random effects, we obtain two sufficient conditions where GLS on this model is equivalent to OLS. Finally, we show that these results, for the equal weight matrix, hold whether we use the spatial autoregressive specification, the spatial moving average specification, the spatial error components specification, or the Kapoor, Kelejian, and Prucha (2005, Journal of Econometrics, forthcoming) alternative to modeling panel data with spatially correlated error components.I thank Paolo Paruolo and an anonymous referee for helpful comments and suggestions.

Suggested Citation

  • Baltagi, Badi H., 2006. "Random Effects And Spatial Autocorrelation With Equal Weights," Econometric Theory, Cambridge University Press, vol. 22(5), pages 973-984, October.
  • Handle: RePEc:cup:etheor:v:22:y:2006:i:05:p:973-984_06
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466606060464/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers 44/13, Institute for Fiscal Studies.
    2. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers CWP44/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Martellosio, Federico, 2008. "Power Properties of Invariant Tests for Spatial Autocorrelation in Linear Regression," MPRA Paper 7255, University Library of Munich, Germany.
    4. Baltagi, Badi H. & Liu, Long, 2024. "Testing for spatial correlation under a complete bipartite network," Economics Letters, Elsevier, vol. 241(C).
    5. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    6. Baltagi, Badi H. & Liu, Long, 2010. "Spurious spatial regression with equal weights," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1640-1642, November.
    7. Baltagi, Badi H. & Liu, Long, 2009. "Spatial lag test with equal weights," Economics Letters, Elsevier, vol. 104(2), pages 81-82, August.
    8. Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB-Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    9. Martellosio, Federico, 2008. "Testing for spatial autocorrelation: the regressors that make the power disappear," MPRA Paper 10542, University Library of Munich, Germany.
    10. Yang, Kai & Lee, Lung-fei, 2021. "Estimation of dynamic panel spatial vector autoregression: Stability and spatial multivariate cointegration," Journal of Econometrics, Elsevier, vol. 221(2), pages 337-367.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:22:y:2006:i:05:p:973-984_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.