IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v177y2013i1p60-74.html
   My bibliography  Save this article

Distribution theory for the studentized mean for long, short, and negative memory time series

Author

Listed:
  • McElroy, Tucker
  • Politis, Dimitris N.

Abstract

We consider the problem of estimating the variance of the partial sums of a stationary time series that has either long memory, short memory, negative/intermediate memory, or is the first-difference of such a process. The rate of growth of this variance depends crucially on the type of memory, and we present results on the behavior of tapered sums of sample autocovariances in this context when the bandwidth vanishes asymptotically. We also present asymptotic results for the case that the bandwidth is a fixed proportion of sample size, extending known results to the case of flat-top tapers. We adopt the fixed proportion bandwidth perspective in our empirical section, presenting two methods for estimating the limiting critical values—both the subsampling method and a plug-in approach. Simulation studies compare the size and power of both approaches as applied to hypothesis testing for the mean. Both methods perform well–although the subsampling method appears to be better sized–and provide a viable framework for conducting inference for the mean. In summary, we supply a unified asymptotic theory that covers all different types of memory under a single umbrella.

Suggested Citation

  • McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
  • Handle: RePEc:eee:econom:v:177:y:2013:i:1:p:60-74
    DOI: 10.1016/j.jeconom.2013.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407613001334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2013.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
    2. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    3. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    4. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    5. Diebold, Francis X. & Rudebusch, Glenn D., 1991. "On the power of Dickey-Fuller tests against fractional alternatives," Economics Letters, Elsevier, vol. 35(2), pages 155-160, February.
    6. K Abadir & W Distaso & L Giraitis, "undated". "Two estimators of the long-run variance," Discussion Papers 05/19, Department of Economics, University of York.
    7. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    8. Lopez, J. Humberto, 1997. "The power of the ADF test," Economics Letters, Elsevier, vol. 57(1), pages 5-10, November.
    9. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    10. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    11. Sun, Yixiao, 2004. "A CONVERGENT t-STATISTIC IN SPURIOUS REGRESSIONS," Econometric Theory, Cambridge University Press, vol. 20(5), pages 943-962, October.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    13. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    14. McElroy, Tucker & Politis, Dimitris N., 2012. "Fixed-B Asymptotics For The Studentized Mean From Time Series With Short, Long, Or Negative Memory," Econometric Theory, Cambridge University Press, vol. 28(2), pages 471-481, April.
    15. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    16. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    17. Agnieszka Jach & Tucker McElroy & Dimitris N. Politis, 2012. "Subsampling inference for the mean of heavy‐tailed long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 96-111, January.
    18. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
    19. Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 171-180, February.
    20. Parker, Cameron & Paparoditis, Efstathios & Politis, Dimitris N., 2006. "Unit root testing via the stationary bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 601-638, August.
    21. Politis, Dimitris, 2005. "Higher-order accurate, positive semi-definite estimation of large-sample covariance and spectral density matrices," University of California at San Diego, Economics Working Paper Series qt7qg2m9rz, Department of Economics, UC San Diego.
    22. Tanaka, Katsuto, 1990. "Testing for a Moving Average Unit Root," Econometric Theory, Cambridge University Press, vol. 6(4), pages 433-444, December.
    23. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
    24. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    2. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    3. Wenger, Kai & Leschinski, Christian, 2021. "Fixed-bandwidth CUSUM tests under long memory," Econometrics and Statistics, Elsevier, vol. 20(C), pages 46-61.
    4. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    5. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    6. Politis, Dimitris, 2012. "On The Behavior Of Nonparametric Density And Spectral Density Estimators At Zero Points Of Their Support," University of California at San Diego, Economics Working Paper Series qt40g0z0tz, Department of Economics, UC San Diego.
    7. McElroy, Tucker S. & Politis, Dimitris N., 2014. "Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics," Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
    8. Fabrizio Iacone & Stephen J. Leybourne & A. M. Robert Taylor, 2014. "A FIXED- b TEST FOR A BREAK IN LEVEL AT AN UNKNOWN TIME UNDER FRACTIONAL INTEGRATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 40-54, January.
    9. Hualde, Javier & Iacone, Fabrizio, 2017. "Fixed bandwidth asymptotics for the studentized mean of fractionally integrated processes," Economics Letters, Elsevier, vol. 150(C), pages 39-43.
    10. Javier Hualde & Fabrizio Iacone, 2015. "Autocorrelation robust inference using the Daniell kernel with fixed bandwidth," Discussion Papers 15/14, Department of Economics, University of York.
    11. Efstathios Paparoditis & Dimitris N. Politis, 2016. "A Note on the Behaviour of Nonparametric Density and Spectral Density Estimators at Zero Points of their Support," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 182-194, March.
    12. Hualde, Javier & Iacone, Fabrizio, 2017. "Revisiting inflation in the euro area allowing for long memory," Economics Letters, Elsevier, vol. 156(C), pages 145-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    2. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. McElroy, Tucker S. & Politis, Dimitris N., 2014. "Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics," Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
    4. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    5. Javier Hualde & Fabrizio Iacone, 2015. "Autocorrelation robust inference using the Daniell kernel with fixed bandwidth," Discussion Papers 15/14, Department of Economics, University of York.
    6. Hualde, Javier & Iacone, Fabrizio, 2017. "Fixed bandwidth asymptotics for the studentized mean of fractionally integrated processes," Economics Letters, Elsevier, vol. 150(C), pages 39-43.
    7. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    8. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    9. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    10. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    11. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    12. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    13. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    14. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    15. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    16. Muller, Ulrich K., 2007. "A theory of robust long-run variance estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1331-1352, December.
    17. Ross McKitrick & Timothy Vogelsang, 2011. "Multivariate trend comparisons between autocorrelated climate series with general trend regressors," Working Papers 1109, University of Guelph, Department of Economics and Finance.
    18. Fabrizio Iacone & Stephen J. Leybourne & A. M. Robert Taylor, 2014. "A FIXED- b TEST FOR A BREAK IN LEVEL AT AN UNKNOWN TIME UNDER FRACTIONAL INTEGRATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 40-54, January.
    19. Ray, Surajit & Savin, N.E. & Tiwari, Ashish, 2009. "Testing the CAPM revisited," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 721-733, December.
    20. Casini, Alessandro, 2024. "The fixed-b limiting distribution and the ERP of HAR tests under nonstationarity," Journal of Econometrics, Elsevier, vol. 238(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:177:y:2013:i:1:p:60-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.