IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Distribution theory for the studentized mean for long, short, and negative memory time series

  • McElroy, Tucker
  • Politis, Dimitris N.

We consider the problem of estimating the variance of the partial sums of a stationary time series that has either long memory, short memory, negative/intermediate memory, or is the first-difference of such a process. The rate of growth of this variance depends crucially on the type of memory, and we present results on the behavior of tapered sums of sample autocovariances in this context when the bandwidth vanishes asymptotically. We also present asymptotic results for the case that the bandwidth is a fixed proportion of sample size, extending known results to the case of flat-top tapers. We adopt the fixed proportion bandwidth perspective in our empirical section, presenting two methods for estimating the limiting critical values—both the subsampling method and a plug-in approach. Simulation studies compare the size and power of both approaches as applied to hypothesis testing for the mean. Both methods perform well–although the subsampling method appears to be better sized–and provide a viable framework for conducting inference for the mean. In summary, we supply a unified asymptotic theory that covers all different types of memory under a single umbrella.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407613001334
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 177 (2013)
Issue (Month): 1 ()
Pages: 60-74

as
in new window

Handle: RePEc:eee:econom:v:177:y:2013:i:1:p:60-74
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1130-1164, December.
  2. Lopez, J. Humberto, 1997. "The power of the ADF test," Economics Letters, Elsevier, vol. 57(1), pages 5-10, November.
  3. Tanaka, Katsuto, 1990. "Testing for a Moving Average Unit Root," Econometric Theory, Cambridge University Press, vol. 6(04), pages 433-444, December.
  4. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  5. Sun, Yixiao, 2004. "A CONVERGENT t-STATISTIC IN SPURIOUS REGRESSIONS," Econometric Theory, Cambridge University Press, vol. 20(05), pages 943-962, October.
  6. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-52, April.
  7. Diebold, Francis X. & Rudebusch, Glenn D., 1991. "On the power of Dickey-Fuller tests against fractional alternatives," Economics Letters, Elsevier, vol. 35(2), pages 155-160, February.
  8. Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 171-180, February.
  9. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
  10. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, 01.
  11. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
  12. McElroy, Tucker S & Politis, D N, 2011. "Distribution Theory for the Studentized Mean for Long, Short, and Negative Memory Time Series," University of California at San Diego, Economics Working Paper Series qt0dr145dt, Department of Economics, UC San Diego.
  13. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
  14. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
  15. Politis, D N & McElroy, Tucker S, 2009. "Fixed-b asymptotics for the studentized mean from time series with short, long or negative memory," University of California at San Diego, Economics Working Paper Series qt70c4x0sq, Department of Economics, UC San Diego.
  16. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
  17. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  18. Agnieszka Jach & Tucker McElroy & Dimitris N. Politis, 2012. "Subsampling inference for the mean of heavy‐tailed long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 96-111, 01.
  19. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
  20. Parker, Cameron & Paparoditis, Efstathios & Politis, Dimitris N., 2006. "Unit root testing via the stationary bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 601-638, August.
  21. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:177:y:2013:i:1:p:60-74. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.