IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v150y2017icp39-43.html
   My bibliography  Save this article

Fixed bandwidth asymptotics for the studentized mean of fractionally integrated processes

Author

Listed:
  • Hualde, Javier
  • Iacone, Fabrizio

Abstract

We consider inference for the mean of a general stationary process based on standardizing the sample mean by a frequency domain estimator of the long run variance. Here, the main novelty is that we consider alternative asymptotics in which the bandwidth is kept fixed. This does not yield a consistent estimator of the long run variance, but, for the weakly dependent case, the studentized sample mean has a Student-t limit distribution, which, for any given bandwidth, appears to be more precise than the traditional Gaussian limit. When data are fractionally integrated, the fixed bandwidth limit distribution of the studentized mean is not standard, and we derive critical values for various bandwidths. By a Monte Carlo experiment of finite sample performance we find that this asymptotic result provides a better approximation than other proposals like the test statistic based on the Memory Autocorrelation Consistent (MAC) estimator of the variance of the sample mean.

Suggested Citation

  • Hualde, Javier & Iacone, Fabrizio, 2017. "Fixed bandwidth asymptotics for the studentized mean of fractionally integrated processes," Economics Letters, Elsevier, vol. 150(C), pages 39-43.
  • Handle: RePEc:eee:ecolet:v:150:y:2017:i:c:p:39-43
    DOI: 10.1016/j.econlet.2016.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176516304062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2016.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
    2. R. S. Deo, 1997. "Asymptotic theory for certain regression models with long memory errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(4), pages 385-393, July.
    3. Yixiao Sun, 2013. "A heteroskedasticity and autocorrelation robust F test using an orthonormal series variance estimator," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-26, February.
    4. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    5. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    6. K Abadir & W Distaso & L Giraitis, "undated". "Two estimators of the long-run variance," Discussion Papers 05/19, Department of Economics, University of York.
    7. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    8. McElroy, Tucker & Politis, Dimitris N., 2012. "Fixed-B Asymptotics For The Studentized Mean From Time Series With Short, Long, Or Negative Memory," Econometric Theory, Cambridge University Press, vol. 28(2), pages 471-481, April.
    9. Michael Jansson, 2004. "The Error in Rejection Probability of Simple Autocorrelation Robust Tests," Econometrica, Econometric Society, vol. 72(3), pages 937-946, May.
    10. Robinson, P. M., 2005. "Robust covariance matrix estimation : 'HAC' estimates with long memory/antipersistence correction," LSE Research Online Documents on Economics 323, London School of Economics and Political Science, LSE Library.
    11. Chen, Willa W. & Hurvich, Clifford M., 2003. "Estimating fractional cointegration in the presence of polynomial trends," Journal of Econometrics, Elsevier, vol. 117(1), pages 95-121, November.
    12. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
    13. Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 171-180, February.
    14. Wang, Qiying & Lin, Yan-Xia & Gulati, Chandra M., 2003. "Asymptotics For General Fractionally Integrated Processes With Applications To Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(1), pages 143-164, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    2. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
    3. Lena Dräger & Theoplasti Kolaiti & Philipp Sibbertsen, 2023. "Measuring macroeconomic convergence and divergence within EMU using long memory," Empirical Economics, Springer, vol. 65(5), pages 2333-2356, November.
    4. Wenger, Kai & Leschinski, Christian, 2021. "Fixed-bandwidth CUSUM tests under long memory," Econometrics and Statistics, Elsevier, vol. 20(C), pages 46-61.
    5. Harvey, David I. & Leybourne, Stephen J. & Whitehouse, Emily J., 2017. "Forecast evaluation tests and negative long-run variance estimates in small samples," International Journal of Forecasting, Elsevier, vol. 33(4), pages 833-847.
    6. Hualde, Javier & Iacone, Fabrizio, 2017. "Revisiting inflation in the euro area allowing for long memory," Economics Letters, Elsevier, vol. 156(C), pages 145-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Hualde & Fabrizio Iacone, 2015. "Autocorrelation robust inference using the Daniell kernel with fixed bandwidth," Discussion Papers 15/14, Department of Economics, University of York.
    2. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    3. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    5. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    6. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    7. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    8. Eben Lazarus & Daniel J. Lewis & James H. Stock, 2021. "The Size‐Power Tradeoff in HAR Inference," Econometrica, Econometric Society, vol. 89(5), pages 2497-2516, September.
    9. Hualde, Javier & Iacone, Fabrizio, 2017. "Revisiting inflation in the euro area allowing for long memory," Economics Letters, Elsevier, vol. 156(C), pages 145-150.
    10. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    11. Yixiao Sun & Xuexin Wang, 2019. "An Asymptotically F-Distributed Chow Test in the Presence of Heteroscedasticity and Autocorrelation," Papers 1911.03771, arXiv.org.
    12. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    13. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    14. Xuexin Wang & Yixiao Sun, 2020. "An Asymptotic F Test for Uncorrelatedness in the Presence of Time Series Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 536-550, July.
    15. Muller, Ulrich K., 2007. "A theory of robust long-run variance estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1331-1352, December.
    16. Fabrizio Iacone & Stephen J. Leybourne & A. M. Robert Taylor, 2014. "A FIXED- b TEST FOR A BREAK IN LEVEL AT AN UNKNOWN TIME UNDER FRACTIONAL INTEGRATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 40-54, January.
    17. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    18. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    19. Sun, Yixiao, 2014. "Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference," Journal of Econometrics, Elsevier, vol. 178(P3), pages 659-677.
    20. Liu, Cheng & Sun, Yixiao, 2019. "A simple and trustworthy asymptotic t test in difference-in-differences regressions," Journal of Econometrics, Elsevier, vol. 210(2), pages 327-362.

    More about this item

    Keywords

    Long run variance estimation; Fractional integration; Large-m and fixed-m asymptotic theory;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:150:y:2017:i:c:p:39-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.